
FORMULA SHEET 

 

You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are 

numbered from 1.1 to 2.7. Part 1.1 to 1.7 contain all the formulas that were needed in the basic course ‘The basics of Transport Phenomena’ and part 2.1 to 2.7 contain new 

formulas used in ‘Advanced Transport Phenomena’. 

 

 

General formulas:  

Newton’s 2nd law of motion. 𝐹 = 𝑚 ∗ 𝑎      
Kinetic energy. 𝐸𝑘 =

1

2
𝑚𝑣2    

Gravitational energy. 𝐸𝑔 = 𝑚 ∗ 𝑔 ∗ ℎ    
Angular velocity of circular motion, where T is the period of the motion. 𝜔 =

2𝜋

𝑇
     

Ideal gas law. R is the Gas constant. 𝑝𝑉 = 𝑛𝑅𝑇    
Density in mass per unit volume. 𝜌 =

𝑚

𝑉
     

Specific heat: Heat needed to heat an object by 1 degree Celsius. Units are 
𝐽

𝑘𝑔∗𝐾
. 𝐶 =

𝑄

𝑚Δ𝑇
   

The conversion of going from Celsius to Kelvin. It is important to note that negative 
temperatures do not exist on the Kelvin scale, while they do for the Celsius scale, so 
when calculating with absolute temperatures, use Kelvin. In relative calculations where 
you take a temperature difference, it doesn’t matter since Kelvin and Celsius are the 
same scale, except they are shifted. 

𝑇𝐾 = 𝑇°C + 273,15  

The radius of a circle, where r is the radius (half the diameter) of the circle. 𝑠 = 2𝜋𝑟    
The area of a circle. 𝐴 = 𝜋𝑟2    
The volume of a sphere. 𝑉 =

4

3
𝜋𝑟3    

 

  



Constants 

𝑁 = 6.022 · 1023 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 The number of molecules in a mole, called Avogadro’s Constant. 

 𝑅 = 8.315
𝐽

𝑚𝑜𝑙∗𝐾
    The gas constant 

𝜎 = 5.67 · 10−8  
𝑊

𝑚2𝐾4   The Stefan-Boltzmann constant 

 

Quantities &Units 

Mass 𝑚  kg 

Time 𝑡  s 

Volume 𝑉 m3 

Velocity 𝑣  m/s 

Density 𝜌 Kg/m3 

Diameter D or d m 

Force 𝐹  N 

Temperature 𝑇  K 

Pressure 𝑝 𝑜𝑟 𝑃  Pa 

Mass flow 𝜙  Kg/s 

Diffusion coefficient 𝐷  m2/s 

Internal energy 𝑈  J 

Heat  𝑄  J 

Work 𝑊  Nm 

Total energy 𝐸   J 

Area 𝐴  m2 

Heat transfer coefficient ℎ  W/(m2·K) 

Thermal conductivity 𝜆  W/(m·K) 

Specific heat 𝐶𝑝 J/(kg·K) 

Drag coefficient 𝐶𝐷  - 

Thermal diffusivity 𝑎  m2/s 

Viscosity 𝜂  Pa·s 

Mass transfer coefficient 𝑘 m/s 

Specific energy dissipation e J/kg 

Shear stress τ Pa 

Wavelength 𝜆 m 

AIR AT 20 ⁰C:        WATER AT 20 ⁰C: 
DENSITY:   1.205 KG/M3      DENSITY:   998.23 KG/M3 

HEAT CAPACITY:  1.007 KJ/(KG K)      HEAT CAPACITY:  4.1850 KJ/(KG K) 

PRANDTL:   0.713       PRANDTL:   7.01 

THERMAL DIFFUSIVITY: 2.119 * 10-5 M2/S     THERMAL DIFFUSIVITY: 0.143 * 10-6 M2/S 

VISCOSITY:  1.82 * 10-5 PA S     VISCOSITY:  1.002 * 10-3 PA S 



WEEK 1.1:  

The general balance equation. 𝑑

𝑑𝑡
= 𝑖𝑛 − 𝑜𝑢𝑡 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

 

 

WEEK 1.2:  

Total energy balance 𝑑𝐸

𝑑𝑡
= 𝜙𝑚,𝑖𝑛 ∗ {𝑈 +

𝑝

𝜌
+

1

2
𝑣2 + 𝑔ℎ}

𝑖𝑛

− 𝜙𝑚,𝑜𝑢𝑡 ∗ {𝑈 +
𝑝

𝜌
+

1

2
𝑣2 + 𝑔ℎ}

𝑜𝑢𝑡

 

First law of Thermodynamics, where Δ𝑊is the net work 
done on the system.  

Δ𝑈 = Δ𝑄 + Δ𝑊 
 

The thermal energy balance in a steady state without 
energy change. 

0 = 𝜙𝑚(𝑢𝑖𝑛 − 𝑢𝑜𝑢𝑡) + 𝜙𝑞 + 𝜙𝑚𝑒𝑓𝑟 

The mechanical energy balance. 
0 = 𝜙𝑚 (

(𝑣𝑖𝑛
2 − 𝑣𝑜𝑢𝑡

2 )

2
+ 𝑔(ℎ𝑖𝑛 − ℎ𝑜𝑢𝑡) +

(𝑝𝑖𝑛 − 𝑝𝑜𝑢𝑡)

𝜌
+ 𝜙𝑤 − 𝜙𝑚𝐸𝑓𝑟) 

Bernoulli’s equation: Neglects all friction and heat 
production. ℎ is height. 

𝑝

𝜌
+

𝑣2

2
+ 𝑔ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Bernoulli’s Principle: The energy per unit volume before is 
the same as the energy per unit volume after. 

𝑃1 +
1

2
𝜌𝑣1

2 + 𝜌𝑔ℎ1 = 𝑃2 +
1

2
𝜌𝑣2

2 + 𝜌𝑔ℎ2 

 

 

WEEK 1.3:  

Reynolds number, where 𝜌𝑓 is the density of the fluid, 𝑣𝑟 

is the relative velocity, D is the diameter and 𝜇 is the 
viscosity of the fluid 

𝑅𝑒 =
𝜌𝑓𝑣𝑟𝐷

𝜇
 

 

The drag force. 𝐶𝐷 is the drag coefficient, A is the frontal 
area, v is the relative velocity. 𝐹𝐷 = 𝐶𝐷𝐴 ∗

1

2
𝜌𝑓𝑣𝑟

2 

Stokes’ law: The drag force on a sphere with a low 
Reynolds number (𝑅𝑒 < 1). 

𝐹𝐷 = 3𝜋𝐷𝜇𝑣𝑟  

 



WEEK 1.4:  

Fourier’s law, the transfer of heat. 𝜆 is the material 
conductivity, Δ𝑥 is the thickness, A is the area, Δ𝑇 is the 
difference in temperature.  

𝜙𝑞 = 𝜆𝐴 ∗
Δ𝑇

Δ𝑥
  

Fick’s law of diffusion, analogous to Fourier’s law. 𝐷 is the 

diffusion coefficient, A is the area and 
𝑑𝐶𝑎

𝑑𝑥
 is the change in 

concentration over x.  

𝜙𝑚 = −𝐷 ∗ 𝐴 ∗ (
𝑑𝑐𝐴

𝑑𝑥
)  

 

WEEK 1.5:  

Newton’s law of cooling. ℎ is the heat transfer coefficient. 𝜙𝑞 = ℎ ∙ 𝐴 ∙ Δ𝑇  
Nusselt number. Used to make h dimensionless.  𝑁𝑢 =

𝐷∙ℎ

λ
   

Mass transfer coefficient, where 𝑆ℎ is the Sherwood 
number, analogous to Nusselt number. Δ𝑥 is the size of 
the object, also called D sometimes.  

𝑘 = 𝑆ℎ ∙
D

Δ𝑥
  

 

WEEK 1.6:  

Thermal diffusivity. 𝜆 is thermal conductivity, 𝜌 is material 
density, 𝐶𝑝 is specific heat. 𝑎 =

𝜆

𝜌 ∙ 𝐶𝑝
 

Penetration depth. Only valid while penetration theory 

still holds, for √𝜋𝑎𝑡 <
𝐷

2
, where D is the size of the sheet 

being penetrated by heat. 

𝑥𝑝 = √𝜋𝑎𝑡 

Fourier number. 
𝐹𝑜 =

𝑎𝑡

𝐷2
 

Nusselt number for penetration theory.  

𝑁𝑢 = √
1

𝜋𝐹𝑜
 

 

WEEK 1.7:  

No new formulas this week!  



WEEK 2.1:  

The general microbalance equation. Where β is the 
dependent variable of interest 

𝑑𝛽

𝑑𝑡
= 𝜙𝛽|𝑥 − 𝜙𝛽|𝑥+𝑑𝑥 + 𝑃𝛽  

 

 

WEEK 2.2:  

Momentum balance 𝑑

𝑑𝑡
(𝑚 · 𝑣𝑥) = 𝜙𝑚,𝑖𝑛 · 𝑣𝑥,𝑖𝑛 − 𝜙𝑚,𝑜𝑢𝑡 · 𝑣𝑥,𝑜𝑢𝑡 +  ∑ 𝐹𝑥 

Fanning pressure drop equation 𝛥𝑝 = 4𝑓 ·  
𝐿

𝐷
·  

1

2
· 𝜌 ·< 𝑣 >2   

Hydraulic diameter, S is the wetted perimeter. 
𝐷ℎ =  

4𝐴

𝑆
 

The fanning friction factor for the laminar regime:  
Re < 2000 4𝑓 =  

64

𝑅𝑒
 

The fanning friction factor for the turbulent regime 
(formula of Blasius): 4000 < Re < 105 

4𝑓 =  0.316 𝑅𝑒−1/4 

The specific energy dissipation is modelled as the sum of 
dissipation in pipelines parts and appendage parts 

𝑒𝑑𝑖𝑠𝑠 = ∑(𝑒𝑓𝑟)𝑖 + ∑(𝑒𝐿)𝑗

𝑗𝑖

 

Specific energy dissipation in appendages for turbulent 
flow 

𝑒𝐿 =  𝐾𝐿 ·
1

2
·< 𝑣 >2 

 

GATE VALVE 
  open 3/4 1/2 1/4 

KL  0.2 0.9 4.5 24 
 
KINK 
α  40 60 80 90 100 120 140 160 

KL  2.43 1.86 1.26 0.98 0.74 0.36 0.14 0.05 
 

 

 



WEEK 2.3:  

DIMENSIONLESS NUMBERS: 

Greatz number: Fraction of conductive over convective 
heat transfer  𝐺𝑧 =

𝑎𝐿

𝑑2𝑣
 

Grashof number: Fraction of buoyancy forces over viscous 
forces 𝐺𝑟 =

𝑑3𝑔

𝑣2  γ ΔT 

Lewis number: Fraction of thickness of thermal boundary 
layer over mass transfer boundary layer 

𝐿𝑒 =  
𝑎

𝐷
                            (D is the mass diffusion constant) 

Peclet (heat) number: Fraction convective heat transfer 
over conductive heat transfer 𝑃𝑒 =

𝑣𝑑

𝑎
 

Peclet (mas) number: Fraction convective mass transfer 
over diffusive mass transfer 

𝑃𝑒 =
𝑣𝑑

𝐷
                           (D is the mass diffusion constant) 

Prandtl number: Fraction of hydrodynamic boundary layer 
thickness over thermal boundary layer thickness 

Pr =
ν

𝑎
                              (ν is the kinematic viscosity) 

Schmidt number: Fraction of hydrodynamic boundary 
layer over mass transfer boundary layer 

𝑆𝑐 =
ν

𝐷
                             (ν is the kinematic viscosity, D is the mass diffusion constant) 

 

DIMENSIONLESS CORRELATIONS FOR HEAT TRANSFER: 

 Laminar flow in tubes: 
 Gz < 0.05  

𝑁𝑢 =  1.08 𝐺𝑧−1/3   and   < 𝑁𝑢 > = 1.62 𝐺𝑧−1/3 

 Laminar flow in tubes: 
 Gz > 0.1 

𝑁𝑢 = < 𝑁𝑢 > = 3.66 

 Turbulent flow in tubes: 
 Re > 104  and  Pr ≥ 0.7 

< 𝑁𝑢 > =  0.027 𝑅𝑒0.8  ·  𝑃𝑟0.33 

Flat plate parallel to flow: 
Re < 3 · 105 

𝑁𝑢 =  0.332 𝑅𝑒1/2  ·  𝑃𝑟1/3 

Long cylinders perpendicular to the flow: 
10 < Re < 104  and  Pr > 0.7  and  Pe >> 1 

< 𝑁𝑢 > =  0.57 𝑅𝑒1/2  ·  𝑃𝑟1/3 

Long cylinders perpendicular to the flow: 
Re > 104  and  Pr > 0.7 

< 𝑁𝑢 > =  0.027 𝑅𝑒0.8  ·  𝑃𝑟0.33 

Flow around spheres: 
10 < Re < 104  and  Pr > 0.7  and  Pe >> 1 

< 𝑁𝑢 > =  2 + 0.66 𝑅𝑒1/2  ·  𝑃𝑟1/3 

 



DIMENSIONLESS CORRELATIONS FOR MASS TRANSFER: 

 Laminar flow in tubes: 
 Gz < 0.05  

𝑆ℎ =  1.08 𝐺𝑧−1/3   and   < 𝑆ℎ > = 1.62 𝐺𝑧−1/3 

 Laminar flow in tubes: 
 Gz > 0.1 

𝑆ℎ = < 𝑆ℎ > = 3.66 

 Turbulent flow in tubes: 
 Re > 104  and  Sc ≥ 0.7 

< 𝑆ℎ > =  0.027 𝑅𝑒0.8  ·  𝑆𝑐0.33 

Flat plate parallel to flow: 
Re < 3 · 105 

𝑆ℎ =  0.332 𝑅𝑒1/2  ·  𝑆𝑐 

Long cylinders perpendicular to the flow: 
1 < Re < 104  and  Sc > 0.7  and  Pe >> 1 

< 𝑆ℎ > =  0.42 𝑆𝑐1/5 +  0.57 𝑅𝑒1/2  ·  𝑆𝑐1/3 

Flow around spheres: 
10 < Re < 104  and  Sc > 0.7  and  Pe >> 1 

< 𝑆ℎ > =  2 + 0.66 𝑅𝑒1/2  ·  𝑆𝑐1/3 

 

OTHER FORMULAS: 

 Sieder and Tate correction, this equation is used in         
situations with a viscosity gradient in turbulent pipe flow 

𝑁𝑢 =  0.027 𝑅𝑒0.8  ·  𝑃𝑟0.33 · (
µ

µ𝑠
)0.14 

The Chilton and Colburn relations combines heat and 
mass flow coefficients 𝑘 =  

ℎ

𝜌 𝐶𝑝
𝐿𝑒−2/3 

 

WEEK 2.4:  

The partition coefficient, in which you may assign phases 
to superscript 1 and 2  

𝑚 =  
𝐶1

𝐶2  

Henry’s Law: with p the partial pressure, H the henry’s 
coefficient and y the fraction dissolved in the liquid 

𝑝𝐴 = 𝐻𝐴 · 𝑦𝐴  

 

 

 

 



WEEK 2.5:  

Shear stress in Newtonian fluids 
 

τ𝑦𝑥 = −µ
𝑑𝑣𝑥

𝑑𝑦
  

Shear stress for liquids that follow the power law (Ostwald 
– De Waele model)  τ𝑦𝑥 = −𝐾 |

𝑣𝑥

𝑑𝑦
|𝑛−1 ·

𝑑𝑣𝑥

𝑑𝑦
 

Shear stress for Bingham liquids  |τ𝑦𝑥| − τ0 = µ |
𝑑𝑣𝑥

𝑑𝑦
|                  for              |τ𝑦𝑥| ≥ τ0 

𝑑𝑣𝑥

𝑑𝑦
= 0                                              for              |τ𝑦𝑥| < τ0 

Shear stress for visco-elastic fluids, where 𝜆 is a elasticity 
parameter 

τ𝑦𝑥  +  𝜆
𝑑τyx

𝑑𝑡
= −µ

𝑑𝑣𝑥

𝑑𝑦
  

Hagen-Poiseuille law is used to calculate flow rates from 
velocity profiles in tubes 

𝜙𝑣 = ∫ 𝑣𝑥(𝑟) 2
𝑅

0
π r dr  

 

WEEK 2.6:  

Stefan-Boltzman Law for grey radiators. Note if e = 1 the 
object is a black radiator 

𝜙𝑞" = 𝑒 𝜎 𝑇4 

Wiens Law that relates the temperature of a radiator to its 
maximum in radiation wavelength 

𝜆𝑚𝑎𝑥 𝑇 = 2.898 ·  10−3 𝑚 · 𝐾  

Heat radiation with the help of visibility factors 𝜙𝑛𝑒𝑡,1→2 = 𝐹1→2𝐴1𝜎𝑇1
4 − 𝐹2→1𝐴2𝜎𝑇2

4 
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GRAPHS:	

	

	 	





FOR	A	SPHERE	


