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A Word About Notations v Al
< m »
= This comment . '
is meant for . n
those of you N A —
who took

the first course

| X
o

= Obviously you
recall the importance of linear systems -
of equations to our story

= Well, in the first course, we adopted a
Linear Algebra point of view, and thus our
notation for the linear system was Ax=b
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= As we enter the second course,
which focuses on Signal & Image
Processing, this notation will
necessarily change to Do=x

A

\ 4

|

s

= Now x will serve as a signal of
interest, D is the dictionary, and
a. is the signal’s representation
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I hope that you will not
find this too confusing
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A Virtual Experiment

=l

= Suppose we accumulate many millions
of image patches, each of size 20x20
pixels

= Clearly, every such image is a point in
JR400

= | et’s put these points in this 400-dim.
Euclidean space, in the cube [0,1]%00

= Now, LET’'S STEP INTO THIS SPACE and look
at the cloud of points we just generated

What are we expected to see?

Michael Elad | The Computer-Science Department | The Technion
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A Virtual Experiment o  Mosmn

X
.:‘
What are we expected to see? ‘00. '0:.‘“
O Y
1. Deserts! Vast emptiness! o %% o
2. Concentration of points in some regions -’ °a
3. Filaments, manifold structure ... LRy 2 &
4. Different densities from one place to another ¢ $4° "o’.. c‘;‘o
N\ J 'o;“. .‘Q'.
| | Y . o S5
In this experiment we have actually created A N ,s:,’,s
an empirical estimate of the Probability % c&‘.’t‘.’é.’;{?&"
Density Function (PDF) of ... image patches .:e:a
: ° 33"
Call it P(x) et
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So, Lets Talk About ... P(x) glﬁﬁ'ﬂ'ﬁ”

of Technology

We “experimented” with small images, but the
same phenomena will be found in audio, seismic
data, financial data, text-files, ... and practically
any source of information you are familiar with

Nevertheless, we stick to images in this course ‘
Imagine this: a function that can be given
an image and returns its chances to exist! P(X)
This is amazing, don’t you think? =
What could you do with such a function? l
Answer: EVERYTHING What ??? Highly Unlikely !
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Everything ? Can you Remove Noise ? N rectauon
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= In the denoising problem, the measurement is
Y=Xo+V, |V, <

= Our goal: Recover x, from y

= Given P(x), we can suggest a recovery of x, by

o Option 1 (MAP): X0
X = ArgMaxP(x) st. [y - XHZ <g
X

o Option 2 (MMSE): y

R=Elx|ly-x|,<ef= [ xP(xdx
fy-xl,=e ly—xof, <
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What About General Inverse Problems ? W Tecon
= In a general inverse problem, the measurement is
y =Cxp +V,

YHZ =&

where C is a general linear degradation operator
(blur, projection, downscaling, subsampling, holes, ...)

= Our goal: Recover x, fromy

= Given P(x), we can suggest a recovery of x, by

=<

X = ArgMaxP(x) s.t. HX = Ctz <eg
X

[An MMSE version also exists, naturally]
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Can it Help in Compression ? 7 TECHNION

S Ty AT AN
&‘Wﬁ:&“ﬁ’gﬁz&g&’g i

= We are given x from an
ensemble of images, along
with its distribution PDF, P(x)

= We are also given a budget of
B bits to represent x, where
our goal is to get the best

<
P YA LR
s

possible compression (i.e. minimize the error)

= The approach we take is to divide the whole space into 28 disjoint sets
(Voronoi) and minimize the error w.r.t. the representation vectors (VQ):
2° Putting aside entropy coding,

. P
Min Z I HX — Xk HZ P(X)dX  Vector Quantization is the best
Xk jk k=1 xeSy you could do in this case
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= The sampling operation relies on some
chosen parameters, such as the basis
functions to project upon, and their

quantity

= Qur goal is to propose sampling and
reconstruction strategies, each (or just ‘ E?S”t"apr‘:ctee
the first) is parameterized, and optimize
the parameters for the smallest possible
error:

M|n j Hx Re const {Sampleg, {x H P(x)dx

|><

© mp Sampling

Reconst.
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Separation ? § econ

= We are given a noisy mixture of the form:
y=X{+X3+Y, |v|, <e

where x, and x, are two different signals from
two different distributions, P, and P,

= Qur goal is to separate the signal into its
ingredients:

ArgMax P;(x1) +Py(X5)

X1/X2

st. |y —x; —x|, <e
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What Else ? v A

of Technology

Anomaly Detection: We are given x and Recognition: We are given a signal x that may

we are supposed to say if it is an belong to one of two possible sets, S; and S,.
anomaly. ThiS IS i s ae The distributions within these
done by ««‘&% two sets are given by P, and P,.
testing “2§<‘¢‘H The decision
P(x)<T «g‘(«« will be made by
0‘«“ P;(X)>Py(x) — xeS;

can synthesize B
artificial signals from g

it that obey the &

original distribution #
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Bottom Line

Question: What P(x) is good for?

Answer: Great many things

-

DenoiSidg, Inberyoltaiwe Aredliction,
Compression, Inference, Sepagation, Anomaly
detection, t , S‘j;marizing,
Segmentation, St ngigg, Conversion,
Matching, Recognition, Indexing, Semi-
supgkyishdllefyousgoideaffbeegion,
Classificati®{xJyfarh gsiagestection, ...
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The Evolution of Priors
In Image Processing

Michael Elad | The Computer-Science Department | The Technion



A~

Image Priors P(X) MTECHNION
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= Here is an untold secret:
The vast literature in image processing
over the past 4-5 decades is

ALMOST NOTHING BUT

an evolution of ideas on the identity
of P(x), and ways to use
it in actual tasks

= By the way, the same is true for many
other data sources and signals ...
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So, Who is P(x) for Images ? gTECHN.ON

= The very first attempts concentrated on the L,-smoothness
assumption — “images are more likely if they are smooth’

= Forcing smoothness is equivalent to penalizing the image
derivatives (L — the Laplacian)

2
el
moo’c‘ﬂ“ess
9
>
70’s 80’s 90’s 00’s 10’s time
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So, Who is P(x) for Images ? ¥

The very first attempts concentrated on the L,-smoothness
assumption — “images are more likely if they are smooth’

Forcing smoothness is equivalent to penalizing the image

derivatives (L — the Laplacian) X = ArgMaxP(x) s.t. Hy —CXHZ €
' )4

This led to the first instance = B
of the Wiener filter for image % = ArgMin HLxug st. |y - CxHZ <e
denoising and deblurring: X .

A ) 2
Benefits: L, is easy to handle, % = ArgMin 2 [Lx[5 +[y - €[,

X

leading to a closed form solution -
B -1
: - T T T
Drawback: Wiener filter results suck! ALL+C C} Cy

TECHNION

Israel Institute
of Technology

VAV 80’s 90’s 00’s 10's
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Using Transforms for Building P(x) v b

of Technology

= Almost in parallel, transforms were used to construct P(x)

= Here T is some chosen transform (DCT, Fourier, ...), and A is a
diagonal non-negative matrix

= This is the prior that the JPEG algorithm relies upon so well

- e—C-HLxH; = Observe that both these options
effectively assume a multivariate

S - - - -
W Gaussian distribution®

= In fact, the two can be made

Tran ) _ * If L, is so poorly performing,
% 5 equivalent if T o T how come JPEG is so
~ e_HATXHZ T AT=cLL successful? We will say
something about this Iater)
AS 80's 90's 00's 10's time
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Adapting the Model to Actual Images W recrion

= Still under the Gaussian regime,
came the KLT, which is the same

v Ip-1
~e X ROX as PCA
6:,? = The idea: learn the autocorrelation
~ 5 matrix instead of “quessing” it, as
~ e_C'HLXHz we have done before
e = At least for small image patches,
< this was shown to be almost the
Transfo, same as 2D-DCT
nJ e 2

of Technology

VAV 80’s 90’s 00’s 10's
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What about the Over-Smoothing ? W Techmion

of Technology

= Realizing the L, is unforgiving to
edges & leading to over-smoothing,

xR 1x ) :

~e = = the weighted L, prior was proposed

£y = W is a diagonal matrix that reduces

™ Lyl? the penalty for “edge-pixels”, so as

~ e_C'H X[ not to penalize their lack of
o ocS 2 smoothness

S Q 5, = This is still following

WLX[;  the Gaussian regime

Tran ~ e
% AT of distributions
~ @ =2

>
70's 80’s 90’s 00's 10’s time
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A New Era in Image Processing: L,
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= In the late 80's, it became clear that L,-based priors (and the
linear filtering they lead to) cannot deliver the desired quality

The alternative came

. . E _
in various forms: % ~ @ MV(X)

Robust-Statistics Robyst -
for handling outliers, N L
Partial Differential ~e Lx];

Equations, and even
Wavelets sparsity

Common to all: assume a

heavy-tailed distribution Wavelets

= Observation 1: All rely on L, !!

= Observation 2: All these led to
a systematic way to design
non-linear filtering algorithms

VAV 80’s 90’s

Michael Elad | The Computer-Science Department | The Technion
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The Most Recent Priors gTGCHNwN

= The more recent and more effective comers to this game of
building P(x) are Sparseland using L,, the Field-of-Expert, and
more (GMM, Co-sparse Analysis, Low-Rank, ...)

= Common to these:

o Adapt the prior to
the data by learning
the parameters, very
similar to the approach
taken by PCA

o Sparsity is key in
forming the model, either
explicitly or implicitly

>
70's 80’s 90’s 00's 10’s time
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The Main Themes in this Evolution W recrnion
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= |, —> L, oreven L,
= | earning & Adaptation

% ~ e_kTV(X)
—A|Lx],

~ e
<&
2
~ e‘HWLX“z
P
H Hz WEWEES € '
v
70’s 80’s 90’s 00’s 10's time
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The Evolution of Image Priors v b

of Technology

Observe that all the expressions we proposed for P(x)
have a Gibbs distribution form P(x)=C-exp{-G(x)}:

Gx)=nlxl, G(x)=ntxl; G(x)=Ar[tx], G(x)=2p{Lx]

7=

K Energy -’7’{;{335mooth ness o Adapt+ {'4, Robust
k’ (’ﬁi' ,\, Smooth “\ Statistics
_ _ « Hidden Markov Models,
G (X) =1 H‘VXHL G (X) =1 HWXHl G (X) =* HQHO . C;m:ess?(:noz\allgo(:itsris as priors,
: - for x = Da

f Total-Variation % Wavelets g& "%

s_f‘v ﬁ\ Sparsity & Sparseland ; &f ]

4% 4! 4" %,/

Michael Elad | The Computer-Science Department | The Technion



Linear vs. Non-Linear
Approximation
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L, = L, (or even Ly) ] Tecemon

of Technology

= There are many ways to interpret the
migration from L, to L, 4 :

o Moving to heavy-tailed distributions
o Handling better outliers (edge-pixels)

o Getting to a non-linear estimation
algorithm, or

o Migration from a linear to a non-linear
approximation

= |et us expand on the last interpretation
as it is key in our story

Michael Elad | The Computer-Science Department | The Technion
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Starting with the L, Option W Tecmon

of Technology

= Suppose that our prior is the following
(the matrix T is unitary, e.g. DCT):

2
P(X) ~ e_HATXHZ

= The matrix A contains the weights of the
transform elements:
_7“1 1 Te
' 0 0
A

A= - ©
Mot 100

| 100 |
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Starting with the L, Option W recneen
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= Qur goal: Denoising a signal with this P(x)

X = ArgMaxP(x) s.t. |y - XHZ <g
X

= Or, more conveniently, by

&= ArgMin [y —x]; ~log { P(0)
X

= This leads us to

T i Ly 2+ L e
P(x) ~ e 2 ) min EHX—XHZ +5[ATX[3

(the factor 1/2 is there for mathematical convenience)

Michael Elad | The Computer-Science Department | The Technion



A~

The L, Solution v Al

of Technology

min 5 eyl + 5 1T

1 1
Ropt = [1 ¥ TTATAT} y =TT [1 " AZJ Ty

1 | T 1
1+7‘% 1+¢2
1 - 1 -
1422 i 101 |
= Implication: do not touch the leading
transform coefficients and remove the rest
= The decision who survives is fixed by A

= This is Linear Approximation

Michael Elad | The Computer-Science Department | The Technion



Moving to the L,,, Option 7 iy

of Technology

Suppose that our prior is the following
(T is unitary, as before), where p=0 or 1:

-MTx|,
P(x) ~ e

Observe that we do not have a weights matrix
A, and a simple scalar A is sufficient here

. T | 2
Denoising this time: min - HX_XHZ +4[Tx],

Surprisingly, this has a closed-form solution
due to the orthogonality of T — let’s show this

Michael Elad | The Computer-Science Department | The Technion



The L,,q Solution

»

min 5 [x-y[; + 4[],

Define z=Tx

| PR Y

2
- %HTT(z—Tx) -+,

= [Ty, 20,

A~

M TECHNION
Israel Institute
of Technolegy
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The L1/0 Solution g TECHNION

= Qur goal is equivalent to (Ty=z,)
1 2
len §H - 0H2 + tzH 2
_M|n Z{ (zk Zo) +xzkp}

= The problem has decomposed into n
separate 1D-optimization tasks of the form

.1
len E(z—zo )2 + |z

= Let’s assume that p=0 (i.e., the L,-norm),
as it is simpler to analyze

Michael Elad | The Computer-Science Department | The Technion



The L1/0 Solution 7 TECHNION
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1
Min E(z—zo )2 ]z

= The unknown, z, could be either =0 or 20
o If z=0, the penalty is 0.5z,

o If z#0, then choose z=z, and
then the penalty is ... A

A

Hard- /
Thresholding
2 1Y 2o/<v22 e
opt zy Otherwise / | S, (Zo)

Michael Elad | The Computer-Science Department | The Technion
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The L,,q Solution v Shiiihhe

min 5 x-y[} + [T, mmb Zope = 7, {Ty]

LUT 1%
Multiply - é Multiply %

X by T by TT B
Zy / S, (2) L,
By,

= Implication: Just like before, some transform
coefficients are nulled while others stay “intact”

= However, the decision who survives is based on
the coefficients’ magnitude themselves

= This is Non-Linear Approximation

Michael Elad | The Computer-Science Department | The Technion




Linear vs. Nonlinear Approximation W Technion
Linear Non-Linear
min ;Hx—XHi + ;HAT>_<H§ min ;HX‘XH; + [T,
Xopt =T' [I " AZF Ty Xopt =T'S, {Ty]

Back to JPEG: Is it really a pure linear
approximation based scheme?
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The Sparseland Model

Michael Elad | The Computer-Science Department | The Technion



Sparseland: A Generative Model T Technion
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Sparseland: A Generative Model W o

These steps define how
a could be created, and
this leads to a complete

Ll () ~ ol definition of P(x)
non-zero values [

m
Draw kg N ., m .
locations '

(e.g. uniformly)
A sparse \ 7
& random X

vector

Draw k, — the
cardinality of a

P(k) ~ ek

A
v

Generate the o
representation A fixed Dictionary

D

Michael Elad | The Computer-Science Department | The Technion
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Sparseland is an Interesting Model Y b
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= Simple: Every generated signal is built as a linear
combination of few atoms from the dictionary D

= Rich: A general model in which the obtained
signals are a union of many low-dimensional
Gaussians

= Familiar: We _
have been 0 M

using this ' H

model and n
variations
A sparse Ny
& random X
vector .

A
v

<

thereof for a \
while. and now A fixed Dictionary
14

it is time to D

make it more
precise

Michael Elad | The Computer-Science Department | The Technion
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Relation to Transform-Based Priors W recrmion
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= Assume that D is square and invertible
P(x) ~ e % where x =Da

o ln-1
o) e 27 _ T,

= The Sparseland model generalizes
previous transform-based methods by
(1) adopting over-completeness, &

(2) daring to work directly with L,

Michael Elad | The Computer-Science Department | The Technion
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Union of Subspaces (UoS) W Techon
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m

d
<«

= Consider all the signals 4z
x that emerge from the :
same k atoms in D — :
all of these reside in the Saissie
same subspace, spanned pex) ~ e b |F
by these atoms where x =Da ||

\4

»

[ |
n||-a

<

= Thus, every possible support (there are
m-choose-k of them) represents one such
subspace which the modelled signals could
belong to

» Sparseland: A Union of Subspaces model

Michael Elad | The Computer-Science Department | The Technion
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The Pursuit Task 'gTECHNION

\4

Given an e-noisy signal,
we need to search the
“closest subspace” and
to project onto it

»

ENEEEEEEEEEEEEEE 4

7

P(x) ~ e_7”||9||0
where X =Da ()

This is the same as saying
that we search the
best-matching support

This is hard due to the number of subspaces

Pursuit = Projection onto our model

min oy st Jy-Da, <e

Michael Elad | The Computer-Science Department | The Technion



Sparseland vs. GMM g recon
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A closely related model: Gaussian-Mixture-Model
\

P(x) ~ > m eXP{—Xk XTQkX}
k=1

In this model, there are N (assumed
here as zero-mean) Gaussians, each
characterized by its auto-correlation matrix Q,

Typically, Q, are of low-rank, to represent the fact
that the Gaussians are low-dimensional

Sparseland offers an exponential number of
Gaussians, each obtained from a different support

All of these Gaussians are encapsulated by D

Michael Elad | The Computer-Science Department | The Technion



The Geometry
behind Sparseland
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Another Virtual Experiment W Technen
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Suppose we experiment again with X0

image patches of size 20x20 N

and we have a database

with many millions of them 8

Choose an arbitrary patch x,

Find the 3-neighbors of this
patch (N of them), and form
the following matrix

E=|X{—Xg Xy—Xp X3—Xg XN—Xp | € R

I | I I
Let’s look more closely at the matrix E ...

nxN

Michael Elad | The Computer-Science Department | The Technion
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Another Virtual Experiment W Technen

Israel Institute
of Technology

Observation: The effective rank Xg
of E (by SVD) is expected to be N
very low: rank(E)=d<<n

This is universally true for
most signals we operate on

Why? because the local
behavior is of a low-dimen.
subspace, where d is its dimension
I I I I
E=|X{—-Xp Xp-Xp X3—Xg XN—Xp | € RN

The orientation and dimension of this subspace
may (and will) change from one point to another

Michael Elad | The Computer-Science Department | The Technion
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Implications W recrovon
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= Given a noisy version of x,: z=x,+v [v~IN(0,5,I)]
how could we denoise it?

= By projecting to the
subspace around X,
(— chicken and egg <)

= How come z is not on the
subspace itself?

o The relative volume of the
subspace is negligible X

o Recall that E{(z-x,)"E}=0, and this implies
that z-x, is very likely to be orthogonal to the
above subspace

Michael Elad | The Computer-Science Department | The Technion



Implications W Tecpon
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= @Given a noisy version of X,: z=X,+V [Vv~IN(0,0,I)]
how shall we denoise it?

= Here are several options:
o Non-Parametric: Nearest Neighbor (NN), or K-NN

o Local-Parametric: Group neighbors, estimate the
subspace and project

o Parametric: Cluster the DB into K subgroups, and
estimate a subspace per each. When a signal is to be
denoised, assign it to the closest subgroup, and then
project on the corresponding subspace (K=1: PCA)

o Sparseland: one dictionary encapsulates many such
clusters, and thus the pursuit applies this projection

Michael Elad | The Computer-Science Department | The Technion



Processing
Sparseland’s Signals
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So, Lets Work with Sparseland W o

We have just seen how Sparsland generalizes
some of the best-known models

This new model offers a powerful
union-of-subspaces to describe practically
any source of data

This parallels a specific and very rich
Gaussian-Mixture-Model structure

It is time to deploy it to actual signal
processing tasks and the question is
how should this be done

Michael Elad | The Computer-Science Department | The Technion
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Signal Transform in Sparseland W recon

of Technology

= We are given a Sparseland signal x=Da (where a is
very sparse) and need the most effective transform

= Effective? In what sense? We want the coefficients to
o ... expose interesting knowledge about the signal
o ... beindependent of each other, so that operating on
them separately is optimal
o ... concentrate the energy in as fewest elements

+ How about this? |~ Min fajy st x=Da

= The sparsest representation is the ideal transform,
satisfying all the above, and we do have theoretical

results guaranteeing finding it

Michael Elad | The Computer-Science Department | The Technion
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Signal Denoising in Sparseland Y b
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We are given z, an ¢-noisy version of a Sparseland
sighal x,=Da, and our goal is to clean it up

Since q, is very sparse, this implies that x, resides
in a low-dim. subspace spanned by a small set of
atoms from D

How about this as a denoising procedure:

0, = Mi t. |z-Dg|, < & —
G=min fafy st z-Daf,<e 5=

O
Q>

If & is close to g, (e.g., in support) this leads to a
strong denoising effect

Theoretical claims supporting this hope exist !!

Michael Elad | The Computer-Science Department | The Technion
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Inverse Problems in Sparseland W recon
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= We are given z=Hx,+yV, an ¢-noisy corrupted
measurement of a Sparseland signal x,=Dga, and our
goal is to restore X,

= Qur strategy — recover g, and then build our estimate:

o= Mmi L. —HD <
=min fa, st [2-HDal, <

x>
Il

O
Q>

= Here again we are equipped with theoretical
guarantees that finding a solution close to a
is within reach, and practical algorithms to do
this are available

Michael Elad | The Computer-Science Department | The Technion
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Signal Compression in Sparseland o
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= We are given X,, a Sparseland signal x,=Da, and
our goal is to compress it

= Solving the
following
for varying
values of ¢ could
lead to an ideal
Rate-Distortion
curve

[ L. -D <
minaly st fxo -Dal, <

ARate

= Could we really solve
this set of problems?
Yes! theoretical claims c
supporting this do exist HXOHZ

Michael Elad | The Computer-Science Department | The Technion
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Signal Separation in Sparseland W recon
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= We are given z=x,+Xx,+V, an g-noisy mixture of
two Sparseland signals x,=D,a, and x,=D,a,
and our goal is to break z into its ingredients

= Qur strategy — recover o, and a,, by:

ap, 0y = aTi(;‘z Joa o + lleal %, =Dy &y
st. |z-Dyoy ~Dyayf, <e Xy =Dy 8,

= The above can be re-written as

o
%]
where = ,Dr=/Dy D
oT L‘} T [1 2]

Michael Elad | The Computer-Science Department | The Technion
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Compressed-Sensing in Sparseland o
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Suppose that x,=Dq,, is a Sparseland signal of
length n that we aim to measure

Instead, we get an ¢-noisy projected version of it,
z=Px,+Vv. P is a well-chosen measurement operator

Given z, pI[ ] E E E . —|—H

our goal is

the recovery of x, " i

G=minfa)y st [z-PDa,<c  %_pa
(04 A i

This resembles the inverse problems mentioned
above with one major difference: We can design P
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Processing Sparseland Signals

All these (and many other) processing tasks
boil down to the solution of

(Pg) &=min faf, st |z-Daf, <e
o

for which we Enow that
1. Itis theoretically sensible, and
2. There are numerical ways to handle it

Bottom line: Sparseland is rooted
on well-established modeling ideas,

and accompanied by solid
mathematical foundations
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A Word of Caution gTECHNION

At this stage you might get the impression
that bringing Sparseland to actual image

processing tasks is very simple — All that
is needed is to form and solve (Py)

Reality is very different !

As we will see, in the migration from theory
to practice, there are many different ways
to turn Sparseland to actual algorithms

This leaves much room for f
originality, flexibility and creativity, in
designing novel image processing algorithms
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Sparse & Redundant Representations
and Their Applications in
Signal and Image Processing

Iterative Shrinkage and Image Deblurring
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Image-Deblurring
via Sparseland:

Problem Formulation
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The Deblurring Experiment W Tecmon
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of Technology

We have just been convinced about the
importance and relevance of Sparseland to

actual image processing needs

We are eager to demonstrate this to a specific
task: We choose to address image deblurring

Our task: Recover an image x from its blurry
& noisy version z=Hx+yv, where v~IN(0,52I) &
H is assumed known

Recall: we said that this would be done by

o= mi L. —HD < W —
a=minfal, st z-HDal,<c  §-p

|RQ>
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More Specifically

v: White Gaussian
noise o2=2

H: 15x15 kernel

Michael Elad | The Computer-Science Department | The Technion
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The Restoration Algorithm

x>
Il

O
Q>

O = Mi L. —HD <
G =min fal, st |z-HDal, <

-

We turn to the Lagrangian form of this
optimization, so as to manage the
constraint more conveniently

n : 1 2
6 = min 7], + 2]z ~HDu

and this implies that we will have a
parameter A to tune

Michael Elad | The Computer-Science Department | The Technion
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The Restoration Algorithm

n . 1 p)
6 = min 7], + 12 ~HDu

-

We relax the L, and replace it with an L,

. 1 2
= min & ~|z-HD
6 =min 2 Jaf, += |z -HDaf;

Main Questions to Address:

= Who is D ? We'll answer this immediately
=  How shall we minimize this function ? We'll
address this next

Michael Elad | The Computer-Science Department | The Technion
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The Dictionary D W Tecpon

of Technology

= \We choose to use the un-decimated Haar
Wavelet as the dictionary

= [t is best described by the operation D'x
o Part 1: We apply this pair of separable
filters (low-pass and high-pass)

V-LPF
-
H-LPF
g [+0.5,-0.5] ) | H1
V-LPF
(+0.5,+0.5] mumdllal!
H HPF

[+0 5,-0.5]

V-HPF
[+0.5,-0.5] ) HH1

Michael Elad | The Computer-Science Department | The Technion



: / LL1

The Dictionary D

A~

TECHNION
Israel Institute

of Technology
|

We choose to use the un-decimated Haar
Wavelet as the dictionary

It is best described by the operation D™x
o Part 1: We apply this pair of separable
filters (low-pass and high-pass)

o Part 2: We repeat this filtering in 3 layers,
getting a redundancy of 10:1 in D

o

LL1

» LH1 - LH1
F » HL1 F » HL1 F
» HH1 » HH1

Michael Elad | The Computer-Science Department | The Technion
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The Dictionary D: The Atoms

= Here are a few atoms from D, demonstrated
for an image of size 20x20 pixels

= Observe that there are three scales in
these atoms

» The atoms’
content: horizontal
vertical and
diagonal edges
or a constant value .

= Note: these
atoms ARE NOT
normalized

Michael Elad | The Computer-Science Department | The Technion
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Starting with
Classical Optimization
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Our Optimization Task W Techon

of Technology

n : 1 2
6 =min o], + Lz - HDa?

Let’s talk about the dimensions involved
10-n

[
>

d
<

Al

. D -

D AN

= We will process an image of size
n=65536=2562 pixels

= The Haar dictionary is 10-times redundant
= Thus, the unknown (o) length is 655,360

Michael Elad | The Computer-Science Department | The Technion ( § |
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So, How do we Optimize ?

N . 1 2
6 =min o], + Lz - HDa?

The first th_ought that comes to mind:
With all the vast knowledge in optimization,
we could easily find a proper tool

1
VARIATIONAL
METHODS IN Applied

. OPTIMIZA ON . N Optimization

with l\l/\l I ;\I‘
Programming

repten wos and
Kven vanaenberghe

convex
Optimization

Michael Elad | The Computer-Science Department | The Technion
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http://www.amazon.com/gp/product/images/1886529450/sr=1-12/qid=1186847983/ref=dp_image_0/002-9967155-1762455?ie=UTF8&n=283155&s=books&qid=1186847983&sr=1-12

A~

Optional Algorithms W Tecton

Israel Institute
of Technology

n : 1 2
6 =min o], + Lz - HDa?

= Methods to consider:
o Steepest Descent (SD)
o Conjugate Gradient
o Pre-Conditioned SD
o Truncated Newton
o Interior-Point Algorithms

O ...

Michael Elad | The Computer-Science Department | The Technion
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Let’s Focus on the SD W Techon
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n . 1 p)
= min o + 3|z - WD}
@

m Vf (o) =2 -sign(a)+D'H' (HDa - 2)

o1 = g — -V (oy)
= oy — ph-sign (o ) —p-D'HT (HDgy —2)
= 1 depends on the Hessian’s eigenvalues:

2
Mmax | VF (@)} " [DTHHD|

O<p<

(assuming that A is very small)
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Momentum Acceleration gTechoN

Israel Institute
of Technology

= The SD algorithm is known for its zigzag path
of solution (especially so when p is optimized)

= A possible remedy: Momentum Acceleration

dy = oy + €y

apyg =G +m-(dg —di_1)

= The parameter m can be optimized for
best performance (typically m~0.9-1)

= This method has close ties with the
Conjugate Gradient (CG) method

Michael Elad | The Computer-Science Department | The Technion



[terative Shrinkage
-Thresholding
Algorithm (ISTA)
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The Majorization-Minimization Idea N rectauon
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= Aim: minimize f(a) — Suppose it is too hard

= Define a function Q(a,0,) that satisfies:

o Q(ag,20)=f(cp)
o Q(a,00)2f(a) for all a &
o VQ(a,a)= Vf(a) at a4

r g
8.2
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The Majorization-Minimization Idea N rectauon
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of Technology

= Then, the following algorithm necessarily
converges to a local (global if f(a) is convex)
minima of f(g) [Hunter & Lange (04)]

O (0] % Q¢ Q11
00

= We have replaced one optimization task by a
series of them. This makes sense only if the
minimization of Q(a,a,) is much easier

= This implies that we need to build Q(a,a,)
wisely. How?
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Constructing Q(a.a,) for our Case § o

Israel Institute
of Technology

n . 1 p)
= min o + 3|z - WD}

Vo

f(o)
C 2 1 p)

Q(aag) =f(a) + 5o~ ol -5 [HD (2 - ap
Let’s check:
o Qag,09)=f(ay) ? Definitely
o Q(a,0,)2f(a) for all a ? Yes, as long as

cI - (HD)' (HD) - 0 mm C > Ao {(HD)T (HD)}
o VQ(a,04)= Vf(a) at g, ? Yes, since the addition

is quadratic with a minimum at a=q,

Michael Elad | The Computer-Science Department | The Technion



Is Q(a,a,) Easy to Minimize ?

1 2
Q(esaq) = 4[al; +5[z-HDal;

1 2
o~ ol ~ 5 [HD (e~ o)

Little bit of algebra (please check), and the
above can be shown to be equal to

Qe ag)=2|jerf; +

2
C

1 T
5 9—{90 +E(HD) (Z—HD%)} ,

This expression can be computed
— let’s denote it as v,

Michael Elad | The Computer-Science Department | The Technion

+ Const.

A~

¥

TECHNION

Israel Institute
of Technology



A~

Is Q(a,a,) Easy to Minimize ? g recmen
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min Q(«o, ag) = min {x Hng n EH@ _ youg + Const.}
a o 2

= This minimization is easy. It can be broken
into m scalar tasks of the form (assume c=1)

m
. 1 2
{mln K‘Otk‘-I-EHOLk —BkHz}
Ok k=1 A SK (a)
= These problems have a closed

form solution known as
soft-thresholding

0 ‘Bk‘ <A
S}L k)~ i
(B) {Bk ~2sign(B,) [Be|> 2

Michael Elad | The Computer-Science Department | The Technion
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Is Q(a.a,) Easy to Minimize ? g recon

of Technology

min Q(«o, ag) = min {x Hng n EH@ _ youg + Const.}
a o 2

= Thus, the solution of the above problem is
given by a simple soft-thresholding applied
on the elements of v,

@opt = S% {YO}

= This is easy, and applying this sequentially
is definitely an appealing algorithm

= A proof ? See a related video from Course 1

= A Demo of this closed form ? See next
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Bottom Line: ISTA

= Our objective is & =min Ao, + 1HZ - HD@H;
o 2

= We apply this algorithrﬁ:

Qo

o az

a [0 Oy O+
00

W) oi =S, oy +L(HD)T (2 WD )

= This is the Iterative Shrinkage-Thresholding
Algorithm (ISTA) [Figueiredo & Nowak, ‘03]
[Daubechies, Defrise, De-Mol, '05] and it is
guaranteed to get the global minimizer

Michael Elad | The Computer-Science Department | The Technion
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Fast ISTA (FISTA) W recneen

The General Idea

dy =9(Qk,§k)
oy yq = A + M- (dg — 1)

and in our case:
1

d =S, {@k + E(HD)T (2- HD@k)}
o yq = G + M- (dg — 1)

This is known as FISTA and it is proven to
converge to the optimal solution [Beck & Teboul, '09]
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ISTA — Summa ry M TECHNION
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We derived ISTA based on the Majorization-
Minimization (MM) approach

An alternative derivation relies on Proximal
Regularization, a central concept in
optimization theory

Different methods of the same flavor exist:

o Split-Bergman

o ADMM based (presented in the first course)
o Parallel Coordinate Descend

o IRLS-based ISTA

All share the same idea, of applying shrinkage
and simple multiplications by HD and D'HT
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ISTA — A Possible Generalization ‘gTechoN

= We can repeat all the above analysis for
& =min Ap () + = |z - HDo?
a 2 2
where p(a) =2 p(ax) [p(c)=|a] for L, ]
k

= This leads to m scalar problems ts (a)
of the form X

. 1 p)
A — o — _
min (o)« o2 s

\ 4

= The solution is a
p-depending shrinkage
curve — see demo next
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Shrinkage:
A Matlab Demo
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Image Deblurring:
Results & Discussion
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Parameters

Found using the Found using the
Power-Method Power-Method

S, {gk+c HD)' (Z—HDQK)} ISTA
d¢ =1

o + p%ign(g) +(HD)' (z—HDg, )} SD

Ol 41 :dkpm'@k ~dy 1) 7

m is either O A is set experimentally to
(no acceleration) 0.06 for best performance
or m=0.9

Michael Elad | The Computer-Science Department | The Technion
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Evaluating c/u by the Power-Method W recrmion
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= These two parameters are governed by
T C> Amax {(HD)' (HD)
max {(HD)' (HD)| (v o)
Ainay {DTHTHD}

= We evaluate this value using the Power-Method:

o Start with a random vector v, of length m
o Iterate k=0:1:N

« Normalize v,=v,/||v,l|

« Compute v,=D"H"(HDv, ,)

o The value v,'v,, is the estimate for the maximal
eigenvector A,
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400 600 800
Iteration
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It appears that (F)ISTA is more
effective in minimizing the
function

You might get the feeling that
the algorithm has not yet
converged — you are right



Results: ISNR ‘g TECHNION
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T = 7, is the ideal image: Thus, the
5D, Moment=09 ISNR quantifies the improvement

——ISTA, Moment=0

5 |——15TA, Moment=0.9 over assuming that z is our solution

= Both boosted methods lead to
ISNR~7dB after ~70 iterations,
and then deteriorate

= With a smart stopping condition,
(which exists!) we could catch this
peak-performance and stop

= ), was tuned in this case to get the
highest value at the peak

400 600
Iteration
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Results: The Restored Image v Al

of Technology
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Image Deblurring:
A Closer Look at
the Results
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Results: The Good and the Bad W Tecpon

of Technology

The results look great!
We get a strong deblurring effect
just as desired

However

This is not the result we expected !!

Let’s explain why
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Results: The Residual ‘gmmon

This is the function we are minimizing

= = SD, Moment=0

- - _ n : 1 2
— ih vomen & =min 2oy +>z~HDal;

—ISTA, Moment=0.9
The True Error

The residual we get is smaller = If the residual does not match the
than the true error, \_Nhich means noise energy (being smaller), we
that the chosen A is too small should choose a bigger

©
3
2
n
Q
o

= This in turn means that we will
lose on the high intermediate peak
performance we saw

400 600 800
Iteration But this is not all ...
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Results: Sparsity ?
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100 200 300 400 500 600 700 800 900 1000
Iteration
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Here is the major difficulty:

The solution we get is not sparse
at all, and especially so around
the first iterations where the peak
was obtained (140,000N2)

Recall: the dimension of the
signal is 2562, so we expect the
minimizer of our function to have
2562 non-zeros at the most

This comes back to the fact that
the algorithm has not converged
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Results: Sparsity ? v Al

of Technology

So, what shall we do?

= Run the FISTA for many more ) Algorithm: FISTA
iterations in order to get the true 200,000 iterations, A=0.17

optimal and sparse result, and .
P P Results: NNZ=18,460 (This is Sparse!)

then see what we get > _
» Do the above with a proper A Residual=1.4144
(0.17 was found to be suitable) so f(200,000)/f(1000)=0.985

as to get the proper residual )
ISNR=3.77dB 11!

So, why have we gotten such a lovely

deblurring with a dense solution ?
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Results: Running till Convergence
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The desired Residual
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Results: Running till Convergence W recrmion
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This is the restored
image (3.77dB) —
reasonably sharper but
with some distortions
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Explanations ? W Techmion
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Observation: We observe a strange behavior

Sparsaland works While minimizing this function, we

: : encountered a MUCH better solution

Harnessing Sparseland for image (7.18B), obtained after only ~70
deblurring, we1m|n|m|zeczl iterations, and having a very dense
fo)=nfol, + > |z—HDa; representation (140,000 NZ)

This led to a 3.77dB improvement How Come ?
over z, & with a sparse

representation (18,460 NZ) Answers: (1) MMSFE F-', ey ~

(2) F \]e(ag\ ~ Model

However ... (3) C K Local Modeling
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So, What Next ? ‘gTECHNION
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We will certainly come back to
the issue of getting a non-
sparse solution, with an
attempt to explain this
phenomenon

But first, let's discuss the
choice of the dictionary, as this
is a key step in deploying
Sparseland

Michael Elad | The Computer-Science Department | The Technion



