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� This comment  
is meant for  
those of you  
who took  
the first course 

� Obviously you  
recall the importance of linear systems  
of equations to our story 

� Well, in the first course, we adopted a 
Linear Algebra point of view, and thus our 
notation for the linear system was Ax=b 
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  A Word About Notations  
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� As we enter the second course,  
which  focuses on Signal & Image 
Processing, this notation will 
necessarily change to DD=x 

� Now x will serve as a signal of 
interest, D is the dictionary, and  
D is the signal’s representation 
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  A Word About Notations  
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I hope that you will not 
find this too confusing 
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A Prior for Images:  
 
How and Why?  
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  A Virtual Experiment 
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� Suppose we accumulate many millions  
of image patches, each of size 20×20 
pixels  

� Clearly, every such image is a point in 
IR400 

� Let’s put these points in this 400-dim.  
Euclidean space, in the cube [0,1]400 

� Now, LET’S STEP INTO THIS SPACE and look  
at the cloud of points we just generated 

 

      What are we expected to see? 

% Gathering the patches 
  
n=20; % patch size 
Filename=cell(9,1);  
Filename{1}='C:\Users\elad\Dropbox (Technion Dropbox)\collaborations\Google-Laplacian-Paper\ppp_work\test_images\barbara.tif';  
Filename{2}='C:\Users\elad\Dropbox (Technion Dropbox)\collaborations\Google-Laplacian-Paper\ppp_work\test_images\boats.tif';  
Filename{3}='C:\Users\elad\Dropbox (Technion Dropbox)\collaborations\Google-Laplacian-Paper\ppp_work\test_images\Butterfly.tif';  
Filename{4}='C:\Users\elad\Dropbox (Technion Dropbox)\collaborations\Google-Laplacian-Paper\ppp_work\test_images\cameraman.tif';  
Filename{5}='C:\Users\elad\Dropbox (Technion Dropbox)\collaborations\Google-Laplacian-Paper\ppp_work\test_images\house.tif';  
Filename{6}='C:\Users\elad\Dropbox (Technion Dropbox)\collaborations\Google-Laplacian-Paper\ppp_work\test_images\leaves.tif';  
Filename{7}='C:\Users\elad\Dropbox (Technion Dropbox)\collaborations\Google-Laplacian-Paper\ppp_work\test_images\Parrots.tif';  
Filename{8}='C:\Users\elad\Dropbox (Technion Dropbox)\collaborations\Google-Laplacian-Paper\ppp_work\test_images\peppers.tif';  
Filename{9}='C:\Users\elad\Dropbox (Technion Dropbox)\collaborations\Google-Laplacian-Paper\ppp_work\test_images\Starfish.tif';  
  
PatchesALL={}; 
count=1;  
for IMAGE=1:1:9 
      
    A=imread(Filename{IMAGE});  
    [r,c]=size(A);  
  
    for k=1:1:2000 
        posR=round(rand*(r-n)+1); 
        posC=round(rand*(c-n)+1); 
        patch=zeros(n+2,n+2); 
        patch(2:n+1,2:n+1)=A(posR:posR+n-1,posC:posC+n-1); 
        if std(reshape(patch(2:n+1,2:n+1),n^2,1))>25 
            PatchesALL{count}=patch; 
            count=count+1;  
        end; 
    end;     
end; 
  
% Building the mosaic image 
  
N=size(PatchesALL,2);  
Mosaic=zeros(1000,1000);  
pos=randperm(N); 
count=1;  
for k=1:1:N 
    posR=round(rand*(1000-n)+1); 
    posC=round(rand*(1000-n)+1); 
    Mosaic(posR:posR+n+1,posC:posC+n+1)=PatchesALL{pos(k)}; 
    if 500*floor(k/500)==k, 
        figure(count); imagesc(Mosaic); axis image; axis off; colormap(gray(256)); drawnow; 
        count=count+1;  
    end; 
end; 
  
 
 



  A Virtual Experiment 
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         What are we expected to see? 

1. Deserts! Vast emptiness!  
2. Concentration of points in some regions 
3. Filaments, manifold structure … 
4. Different densities from one place to another 

 

In this experiment we have actually created  
an empirical estimate of the Probability 

Density Function (PDF) of … image patches 
 

Call it P(x) 



  So, Lets Talk About … P(x) 
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� We “experimented” with small images, but the 
same phenomena will be found in audio, seismic 
data, financial data, text-files, … and practically 
any source of information you are familiar with 

� Nevertheless, we stick to images in this course 

� Imagine this: a function that can be given  
an image and returns its chances to exist!  
This is amazing, don’t you think?  

� What could you do with such a function?   

           Answer: EVERYTHING 

P(x) 
What ??? Highly Unlikely ! 



  Everything ? Can you Remove Noise ?  
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y

Region where 
P(x) is high 

� In the denoising problem, the measurement is 

 

� Our goal: Recover x0 from y 

� Given P(x), we can suggest a recovery of x0 by  

o Option 1 (MAP):  

 
o Option 2 (MMSE):  
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Recall that for random 
noise we have  
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  What About General Inverse Problems ? 
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y

Region where 
P(x) is high 

� In a general inverse problem, the measurement is 
 
 
where C is a general linear degradation operator  
(blur, projection, downscaling, subsampling, holes, …) 

� Our goal: Recover x0 from y 

� Given P(x), we can suggest a recovery of x0 by  

 
 

           [An MMSE version also exists, naturally] 
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  Can it Help in Compression ? 
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� We are given x from an  
ensemble of images, along  
with its distribution PDF, P(x) 

� We are also given a budget of  
B bits to represent x, where  
our goal is to get the best  
possible compression (i.e. minimize the error) 

� The approach we take is to divide the whole space into 2B disjoint sets 
(Voronoi) and minimize the error w.r.t. the representation vectors (VQ): 
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Putting aside entropy coding, 
Vector Quantization is the best  
you could do in this case  



  Sampling ? 
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� The sampling operation relies on some 
chosen parameters, such as the basis 
functions to project upon, and their 
quantity 

� Our goal is to propose sampling and 
reconstruction strategies, each (or just 
the first) is parameterized, and optimize 
the parameters for the smallest possible 
error: 
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  Separation ? 
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� We are given a noisy mixture of the form:  
 
 
where x1 and x2 are two different signals from 
two different distributions, P1 and P2 

� Our goal is to separate the signal into its 
ingredients: 
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  What Else ? 
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Recognition: We are given a signal x that may 
belong to one of two possible sets, S1 and S2. 
The distributions within these  
two sets are given by P1 and P2.  
The decision  
will be made by  
P1(x)>P2(x) o x�S1 

Anomaly Detection: We are given x and 
we are supposed to say if it is an 
anomaly. This is  
done by  
testing  
P(x)<T 

Synthesis or 
Hallucinations: Given 

the PDF P(x), we 
can synthesize 

artificial signals from 
it that obey the 

original distribution 



  Bottom Line 
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Question: What P(x) is good for? 

Answer: Great many things 

 
 

So, … how do we find  

                                                                                                                                                                                                                                                                                                                                                                             P(x)  
 

             We shall focus our efforts  
                 on P(x) for images 

? 
Denoising, Interpolation, Prediction, 

Compression, Inference, Separation, Anomaly 
detection, Clustering, Summarizing, 

Segmentation, Style-changing, Conversion, 
Matching, Recognition, Indexing, Semi-

supervised learning, Identification, 
Classification, Synthesis, Detection, … 



The Evolution of Priors  
in Image Processing  
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  Image Priors P(x) 
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� Here is an untold secret: 
 

The vast literature in image processing 
over the past 4-5 decades is  

 

ALMOST NOTHING BUT 
 

an evolution of ideas on the identity  
of P(x), and ways to use  

it in actual tasks  
 

� By the way, the same is true for many 
other data sources and signals … 



  So, Who is P(x) for Images ? 
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� The very first attempts concentrated on the L2-smoothness 
assumption – “images are more likely if they are smooth” 

� Forcing smoothness is equivalent to penalizing the image 
derivatives (L – the Laplacian)  

time70’s                  80’s                     90’s                    00’s                     10’s 

2
2c x
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  So, Who is P(x) for Images ? 
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� The very first attempts concentrated on the L2-smoothness 
assumption – “images are more likely if they are smooth” 

� Forcing smoothness is equivalent to penalizing the image 
derivatives (L – the Laplacian)  

� This led to the first instance  
of the Wiener filter for image  
denoising and deblurring:  

� Benefits: L2 is easy to handle,  
leading to a closed form solution 

� Drawback: Wiener filter results suck!  

time70’s                  80’s                     90’s                    00’s                     10’s 
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  Using Transforms for Building P(x) 
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� Almost in parallel, transforms were used to construct P(x) 

� Here T is some chosen transform (DCT, Fourier, …), and / is a 
diagonal non-negative matrix 

� This is the prior that the JPEG algorithm relies upon so well 

� Observe that both these options 
effectively assume a multivariate 
Gaussian distribution 

� In fact, the two can be made  
equivalent if  

time70’s                  80’s                     90’s                    00’s                     10’s 

T 2 Tc/  T T L L
2
2x~ e

� /T

*  If L2 is so poorly performing, 
how come JPEG is so 
successful? We will say 
something about this later 

* 



  Adapting the Model to Actual Images 
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� Still under the Gaussian regime, 
came the KLT, which is the same  
as PCA  

� The idea: learn the autocorrelation 
matrix instead of “guessing” it, as 
we have done before 

� At least for small image patches, 
this was shown to be almost the  
same as 2D-DCT 
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  What about the Over-Smoothing ?  
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� Realizing the L2 is unforgiving to  
edges & leading to over-smoothing,  
the weighted L2 prior was proposed 

� W is a diagonal matrix that reduces  
the penalty for “edge-pixels”, so as  
not to penalize their lack of  
smoothness 

� This is still following  
the Gaussian regime  
of distributions 
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  A New Era in Image Processing: L1 
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� In the late 80’s, it became clear that L2-based priors (and the 
linear filtering they lead to) cannot deliver the desired quality 

� The alternative came  
in various forms:  
Robust-Statistics  
for handling outliers,  
Partial Differential  
Equations, and even  
Wavelets sparsity 

� Common to all: assume a  
heavy-tailed distribution 

TV(x)~ e�O

1x~ e
�O L

Wavelets 
1x~ e

�O T

� Observation 1: All rely on L1 !! 
� Observation 2: All these led to  

a systematic way to design  
non-linear filtering algorithms  



  The Most Recent Priors 
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� The more recent and more effective comers to this game of 
building P(x) are Sparseland using L0, the Field-of-Expert, and 
more (GMM, Co-sparse Analysis, Low-Rank, …) 

� Common to these:  
o Adapt the prior to  

the data by learning  
the parameters, very  
similar to the approach  
taken by PCA  

o Sparsity is key in  
forming the model, either  
explicitly or implicitly 
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  The Main Themes in this Evolution 
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� L2 o L1 or even L0 
� Learning & Adaptation 



  The Evolution of Image Priors 
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Observe that all the expressions we proposed for P(x) 
have a Gibbs distribution form P(x)=C·exp{-G(x)}:  

• Hidden Markov Models, 

• Compression algorithms as priors,  

• … 

� � 2

2
G x x O

Energy 

� � 2

2
G x x O L

Smoothness 

� � 2
G x x O

W
L

Adapt+ 
Smooth 

� � ^ `G x x OU L

Robust 
Statistics 

� �
1

G x x O �

Total-Variation 

� � 1
G x x O W

Wavelets 
Sparsity 

� � 0
G x  O D

Sparseland 

D Dxfor



Linear vs. Non-Linear  
Approximation 
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  L2 o L1 (or even L0) 
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� There are many ways to interpret the 
migration from L2 to L1/0 :  

o Moving to heavy-tailed distributions 

o Handling better outliers (edge-pixels) 

o Getting to a non-linear estimation 
algorithm, or   

o Migration from a linear to a non-linear 
approximation 

� Let us expand on the last interpretation 
as it is key in our story 



  Starting with the L2 Option 
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� Suppose that our prior is the following  
(the matrix T is unitary, e.g. DCT): 
 
 

 
� The matrix / contains the weights of the 

transform elements: 

2
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  Starting with the L2 Option 
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� Our goal: Denoising a signal with this P(x) 
 
 

 
� Or, more conveniently, by 

 
 
 

� This leads us to  
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(the factor 1/2 is there for mathematical convenience) 



  The L2 Solution 
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� Implication: do not touch the leading  
transform coefficients and remove the rest  

� The decision who survives is fixed by / 
� This is Linear Approximation 
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  Moving to the L1/0 Option 
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� Suppose that our prior is the following  
(T is unitary, as before), where p=0 or 1:  

 
� Observe that we do not have a weights matrix 
/, and a simple scalar O is sufficient here 

 

� Denoising this time: 
 

� Surprisingly, this has a closed-form solution 
due to the orthogonality of T – let’s show this  
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  The L1/0 Solution 
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Define z=Tx 
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  The L1/0 Solution 
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2
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1
Min z z z
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� Our goal is equivalent to (Ty=z0) 

 
 

 
� The problem has decomposed into n 

separate 1D-optimization tasks of the form 

 
� Let’s assume that p=0 (i.e., the L0-norm), 

as it is simpler to analyze 
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  The L1/0 Solution 
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� The unknown, z, could be either =0 or z0 

o If z=0, the penalty is 0.5z0
2 

o If zz0, then choose z=z0 and  
then the penalty is … O 
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Hard-
Thresholding 



  The L1/0 Solution 
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� Implication: Just like before, some transform 
coefficients are nulled while others stay “intact” 

� However, the decision who survives is based on 
the coefficients’ magnitude themselves 

� This is Non-Linear Approximation 
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  Linear vs. Nonlinear Approximation 
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Non-Linear Linear  
 
 

 
 

A non-linear filter A linear filter 

Choose the  
dominant coefficients 

wherever they are 

Choose the leading 
coefficients in  

pre-specified places 

^ `T
opt Sx̂ yO T T

2 2
22x

1 1
min x y x

2 2
� � /T

1T 2
optx̂ I y

�
ª º � /
¬ ¼

T T

2
p2x

1
min x y x

2
� � O T

Back to JPEG: Is it really a pure linear 
approximation based scheme?  



The Sparseland  Model 
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  Sparseland: A Generative Model 

M� m 

n 

D
A fixed Dictionary A sparse  

& random 
vector 
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  Sparseland: A Generative Model 

M� m 
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D
A fixed Dictionary A sparse  

& random 
vector 
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Draw k0  
locations  

(e.g. uniformly) 

Draw k0 – the 
cardinality of D 

kP(k) ~ e�O

Draw k0  
non-zero values 

2
2vP(v) ~ e

�E

Generate the  
representation   

α

These steps define how  
D could be created, and 
this leads to a complete 
definition of P(x)  



  Sparseland is an Interesting Model 
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� Simple: Every generated signal is built as a linear 
combination of few atoms from the dictionary D 

� Rich: A general model in which the obtained 
signals are a union of many low-dimensional 
Gaussians  

� Familiar: We  
have been   
using this  
model and  
variations  
thereof for a  
while, and now  
it is time to  
make it more  
precise  

M� m 

n 

D
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& random 
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  Relation to Transform-Based Priors 
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� Assume that D is square and invertible 

 

 
 

� The Sparseland model generalizes 
previous transform-based methods by               

(1) adopting over-completeness, &  

(2) daring to work directly with L0 

0P(x) ~ e where x
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  Union of Subspaces (UoS) 
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� Consider all the signals  
x that emerge from the  
same k atoms in D –  
all of these reside in the  
same subspace, spanned  
by these atoms 

� Thus, every possible support (there are  
m-choose-k of them) represents one such 
subspace which the modelled signals could 
belong to   

� Sparseland: A Union of Subspaces model 

0P(x) ~ e
where x

�O D

 DD

m 

n  



  The Pursuit Task 
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� Given an ε-noisy signal,  
we need to search the  
“closest subspace” and 
to project onto it 

� This is the same as saying  
that we search the  
best-matching support 

� This is hard due to the number of subspaces 

� Pursuit = Projection onto our model 

0P(x) ~ e
where x
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  Sparseland vs. GMM 
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� A closely related model: Gaussian-Mixture-Model 

 

 

� In this model, there are N (assumed  
here as zero-mean) Gaussians, each  
characterized by its auto-correlation matrix Qk 

� Typically, Qk are of low-rank, to represent the fact 
that the Gaussians are low-dimensional 

�  Sparseland offers an exponential number of  
Gaussians, each obtained from a different support 

� All of these Gaussians are encapsulated by D 
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The Geometry  
behind Sparseland 
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  Another Virtual Experiment 
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� Suppose we experiment again with  
image patches of size 20×20  
and we have a database  
with many millions of them 

� Choose an arbitrary patch x0 

� Find the G-neighbors of this  
patch (N of them), and form  
the following matrix 

 

 

� Let’s look more closely at the matrix E … 

n N
1 2 3 N0 0 0 0

| | | |
x x x x
| |

x
|

x x
|

x u
ª º
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  Another Virtual Experiment 
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� Observation: The effective rank  
of E (by SVD) is expected to be  
very low: rank(E)=d<<n 

� This is universally true for  
most signals we operate on 

� Why? because the local  
behavior is of a low-dimen.  
subspace, where d is its dimension 
 
 

 
� The orientation and dimension of this subspace 

may (and will) change from one point to another 

G

n N
1 2 3 N0 0 0 0

| | | |
x x x x
| |

x
|

x x
|

x u
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  Implications 
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� Given a noisy version of x0: z=x0+v  [v~IN(0,V2I)] 
how could we denoise it? 

� By projecting to the  
subspace around x0  
(o chicken and egg m) 

� How come z is not on the  
subspace itself?  

o The relative volume of the  
subspace is negligible 

o Recall that E{(z-x0)TE}=0, and this implies  
that z-x0 is very likely to be orthogonal to the 
above subspace 

0x

z 



  Implications 
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� Given a noisy version of x0:  z=x0+v [v~IN(0,V2I)] 
how shall we denoise it? 

� Here are several options:  

o Non-Parametric: Nearest Neighbor (NN), or K-NN 

o Local-Parametric: Group neighbors, estimate the 
subspace and project 

o Parametric: Cluster the DB into K subgroups, and 
estimate a subspace per each. When a signal is to be 
denoised, assign it to the closest subgroup, and then 
project on the corresponding subspace  (K=1: PCA) 

o Sparseland: one dictionary encapsulates many such 
clusters, and thus the pursuit applies this projection 



Processing  
Sparseland ’s Signals 
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  So, Lets Work with Sparseland 
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� We have just seen how Sparsland generalizes 
some of the best-known models 

� This new model offers a powerful  
union-of-subspaces to describe practically  
any source of data 

� This parallels a specific and very rich 
Gaussian-Mixture-Model structure  

� It is time to deploy it to actual signal 
processing tasks and the question is  
how should this be done 



  Signal Transform in Sparseland 
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� We are given a Sparseland signal x=DD (where D is 
very sparse) and need the most effective transform  

� Effective? In what sense? We want the coefficients to 
o … expose interesting knowledge about the signal  

o … be independent of each other, so that operating on 
them separately is optimal 

o … concentrate the energy in as fewest elements 
 

� How about this? 
 

� The sparsest representation is the ideal transform, 
satisfying all the above, and we do have theoretical 
results guaranteeing finding it 

0min s.t. x
D

D  DD



  Signal Denoising in Sparseland 
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� We are given z, an H-noisy version of a Sparseland 
signal x0=DD0 and our goal is to clean it up 

� Since D0 is very sparse, this implies that x0 resides 
in a low-dim. subspace spanned by a small set of 
atoms from D 

� How about this as a denoising procedure:  

 
 

� If     is close to D0 (e.g., in support) this leads to a 
strong denoising effect 

� Theoretical claims supporting this hope exist !! 

x̂ ˆ DD0 2min s.t. zˆ
D

D  D � D d HD

D̂



  Inverse Problems in Sparseland 
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� We are given z=Hx0+v, an H-noisy corrupted 
measurement of a Sparseland signal x0=DD0 and our 
goal is to restore x0 

� Our strategy – recover D0 and then build our estimate: 

 

 

� Here again we are equipped with theoretical 
guarantees that finding a solution close to D0  
is within reach, and practical algorithms to do  
this are available 

0 2min s.t. zˆ
D

D  D � D d HHD x̂ ˆ DD



  Signal Compression in Sparseland 
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� We are given x0, a Sparseland signal x0=DD0 and  
our goal is to compress it 

� Solving the  
following 
for varying  
values of H could  
lead to an ideal  
Rate-Distortion  
curve  

� Could we really solve  
this set of problems?  
Yes! theoretical claims  
supporting this do exist 

00 2min s.t. x
D

D � D d HD

H 

Rate 
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  Signal Separation in Sparseland 
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� We are given z=x1+x2+v, an H-noisy mixture of  
two Sparseland signals x1=D1D1 and x2=D2D2  
and our goal is to break z into its ingredients  

� Our strategy – recover D1 and D2 by: 

 

 
 

� The above can be re-written as  

1 2
1 2 1 20 0,

1 21 2 2

, minˆ ˆ
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  Compressed-Sensing in Sparseland 
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p 

0 2min s.t. zˆ
D

D  D � D d HPD
m 

�
n 

� Suppose that x0=DD0 is a Sparseland signal of  
length n that we aim to measure 

� Instead, we get an H-noisy projected version of it, 
z=Px0+v. P is a well-chosen measurement operator  

� Given z,  
our goal is  
the recovery of x0 

 
� This resembles the inverse problems mentioned 

above with one major difference: We can design P  

x̂ ˆ DD



  Processing Sparseland  Signals  
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All these (and many other) processing tasks  
boil down to the solution of 

 
 

for which we know that 
1. It is theoretically sensible, and  
2. There are numerical ways to handle it 
 

Bottom line: Sparseland  is rooted  
on well-established modeling ideas,  

and accompanied by solid  
mathematical foundations   

0 20 mi( n s.t. zˆP )
D

H D  D � D d HD



  A Word of Caution  
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� At this stage you might get the impression 

that bringing Sparseland  to actual image 

processing tasks is very simple – All that  

is needed is to form and solve 

� Reality is very different !  

� As we will see, in the migration from theory  

to practice, there are many different ways  

to turn Sparseland  to actual algorithms 

� This leaves much room for ingenuity, 

originality, flexibility and creativity, in 

designing novel image processing algorithms 

0(P )
H
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Image-Deblurring  
via Sparseland:  
 Problem Formulation 
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  The Deblurring Experiment 
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� We have just been convinced about the 
importance and relevance of Sparseland  to 
actual image processing needs 

� We are eager to demonstrate this to a specific 
task: We choose to address image deblurring  

� Our task: Recover an image x from its blurry 
& noisy version z=Hx+v, where v~IN(0,V2I) & 
H is assumed known  

� Recall: we said that this would be done by  

0 2min s.t. zˆ
D

D  D � D d HHD x̂ ˆ DD



  More Specifically 

Michael Elad  |  The Computer-Science Department  |  The Technion 

v: White Gaussian 
noise σ2=2 

H: 15×15 kernel 

2 2

c
n m 1

for
7 n,m 7

� �

� d d

Hx z 
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  The Restoration Algorithm 
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We turn to the Lagrangian form of this 
optimization, so as to manage the 

constraint more conveniently 
 
 
 

and this implies that we will have a 
parameter O to tune  



  The Restoration Algorithm 
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2
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We relax the L0 and replace it with an L1 
 
 
 

Main Questions to Address:  
 

� Who is D ? We’ll answer this immediately 
� How shall we minimize this function ? We’ll 

address this next  
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  The Dictionary D 
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H-LPF 
[+0.5,+0.5] 

H-HPF 
[+0.5,-0.5] 

V-LPF 
[+0.5,+0.5] 

V-HPF 
[+0.5,-0.5] 

V-LPF 
[+0.5,+0.5] 

V-HPF 
[+0.5,-0.5] 

HH1 

HL1 

LH1 

LL1 

F 

� We choose to use the un-decimated Haar 
Wavelet as the dictionary 

� It is best described by the operation DTx 
o Part 1: We apply this pair of separable 

filters (low-pass and high-pass) 



  The Dictionary D 
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HH1 

HL1 

LH1 

LL1  

F 
HH1 

HL1 

LH1 

LL1  

F 
HH1 

HL1 

LH1 

LL1  

F 

� We choose to use the un-decimated Haar 
Wavelet as the dictionary 

� It is best described by the operation DTx 
o Part 1: We apply this pair of separable 

filters (low-pass and high-pass) 
o Part 2: We repeat this filtering in 3 layers, 

getting a redundancy of 10:1 in D 

LL1 



  The Dictionary D: The Atoms 
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� Here are a few atoms from D, demonstrated 
for an image of size 20×20 pixels 

� Observe that there are three scales in  
these atoms  

� The atoms’  
content: horizontal   
vertical and  
diagonal edges  
or a constant value 

� Note: these  
atoms ARE NOT  
normalized 
 



Starting with  
Classical Optimization  
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  Our Optimization Task 
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Let’s talk about the dimensions involved 

 
 

 

� We will process an image of size  
n=65536=2562 pixels 

� The Haar dictionary is 10-times redundant 
� Thus, the unknown (D) length is 655,360 
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  So, How do we Optimize ? 
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The first thought that comes to mind:  
With all the vast knowledge in optimization,  

we could easily find a proper tool 
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http://www.amazon.com/gp/product/images/1886529450/sr=1-12/qid=1186847983/ref=dp_image_0/002-9967155-1762455?ie=UTF8&n=283155&s=books&qid=1186847983&sr=1-12


  Optional Algorithms 
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� Methods to consider: 

o Steepest Descent (SD)  

o Conjugate Gradient 

o Pre-Conditioned SD 

o Truncated Newton  

o Interior-Point Algorithms 

o … 

2
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  Let’s Focus on the SD 
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� P depends on the Hessian’s eigenvalues:  
 

 

  (assuming that O is very small) 
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  Momentum Acceleration   
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� The SD algorithm is known for its zigzag path 
of solution (especially so when P is optimized) 

� A possible remedy: Momentum Acceleration 

 

 
 

� The parameter m can be optimized for  
best performance (typically m|0.9-1) 

� This method has close ties with the  
Conjugate Gradient (CG) method  
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Iterative Shrinkage 
 -Thresholding  
Algorithm (ISTA) 
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  The Majorization-Minimization Idea 
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� Aim: minimize f(D) – Suppose it is too hard  

� Define a function Q(D,D0) that satisfies: 

0D D

� �Df� �0,Q DD

oQ(D0,D0)=f(D0) 
oQ(D,D0)≥f(D) for all D & 
o�Q(D,D0)= �f(D) at D0 



  The Majorization-Minimization Idea 

Michael Elad  |  The Computer-Science Department  |  The Technion 

� Then, the following algorithm necessarily 
converges to a local (global if f(D) is convex) 
minima of f(D) [Hunter & Lange (04)] 

 

 
 

� We have replaced one optimization task by a 
series of them. This makes sense only if the 
minimization of Q(α,α0) is much easier 

� This implies that we need to build Q(α,α0) 
wisely. How?  

Minimize 

Q(α,α1) 

α2 
Minimize 

Q(α,αk) 

αk αk+1 
Minimize 

Q(α,α0) 

α0 α1 



  Constructing Q(α,α0) for our Case  
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Let’s check:  
oQ(D0,D0)=f(D0) ? Definitely 
oQ(D,D0)≥f(D) for all D ? Yes, as long as 

 
o�Q(D,D0)= �f(D) at D0 ? Yes, since the addition 

is quadratic with a minimum at D=D0 

� � � �Tc 0�I HD HD � � � �^ `T
maxc ! O HD HD



  Is Q(α,α0) Easy to Minimize ?  
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Little bit of algebra (please check), and the 
above can be shown to be equal to  
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This expression can be computed 
– let’s denote it as v0  



  Is Q(α,α0) Easy to Minimize ?  
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� This minimization is easy. It can be broken 
into m scalar tasks of the form (assume c=1) 

 
 

� These problems have a closed  
form solution known as  
soft-thresholding  
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  Is Q(α,α0) Easy to Minimize ?  
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� Thus, the solution of the above problem is 
given by a simple soft-thresholding applied 
on the elements of v0   

 
� This is easy, and applying this sequentially 

is definitely an appealing algorithm 

� A proof ? See a related video from Course 1  

� A Demo of this closed form ? See next 
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  Bottom Line: ISTA 
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� Our objective is 
 

� We apply this algorithm: 

 

 
 

 

� This is the Iterative Shrinkage-Thresholding  
Algorithm (ISTA) [Figueiredo & Nowak, ‘03] 
[Daubechies, Defrise, De-Mol, ‘05] and it is 
guaranteed to get the global minimizer 
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Minimize 

Q(α,α1) 

α2 
Minimize 

Q(α,αk) 

αk αk+1 
Minimize 

Q(α,α0) 

α0 α1 
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  Fast ISTA (FISTA) 
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The General Idea 
 
 
 
 
 

and in our case: 
 
 
 
 

This is known as FISTA and it is proven to 
converge to the optimal solution [Beck & Teboul, ‘09]  
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  ISTA – Summary  
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� We derived ISTA based on the Majorization-
Minimization (MM) approach 

� An alternative derivation relies on Proximal 
Regularization, a central concept in 
optimization theory 

� Different methods of the same flavor exist:  
 

o Split-Bergman  
o ADMM based (presented in the first course) 
o Parallel Coordinate Descend 
o IRLS-based ISTA 

� All share the same idea, of applying shrinkage 
and simple multiplications by HD and DTHT 



  ISTA – A Possible Generalization  
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� We can repeat all the above analysis for  
 
 
 

where                        [U(D)=|D| for L1 ] 
 

� This leads to m scalar problems  
of the form  

 
� The solution is a  
U-depending shrinkage  
curve – see demo next  
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Shrinkage:  
A Matlab Demo  
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Image Deblurring:  
Results & Discussion 
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  Parameters  
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Found using the  
Power-Method 

O is set experimentally to 
0.06 for best performance 

m is either 0  
(no acceleration) 

or m=0.9 

Found using the  
Power-Method  



  Evaluating c/P by the Power-Method 
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� These two parameters are governed by 

 
 

� We evaluate this value using the Power-Method:  

o Start with a random vector v0 of length m 

o Iterate k=0:1:N  

• Normalize vk=vk/||vk|| 

• Compute vk=DTHT(HDvk-1) 

o The value vk
Tvk-1 is the estimate for the maximal 

eigenvector Omax 
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  Results: f(D) 
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� It appears that (F)ISTA is more 
effective in minimizing the 
function 

� You might get the feeling that 
the algorithm has not yet 
converged – you are right 
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  Results: ISNR 
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It appears that 
(F)ISTA is 

more effective 
in minimizing 
the function 

2
0 2

10 2
0k 2

z z
10 log

z

�

D �D

� z0 is the ideal image: Thus, the 
ISNR quantifies the improvement 
over assuming that z is our solution 

� Both boosted methods lead to 
ISNR|7dB after ~70 iterations,  
and then deteriorate 

� With a smart stopping condition, 
(which exists!) we could catch this 
peak-performance and stop 

� O was tuned in this case to get the 
highest value at the peak 



  Results: The Restored Image  
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Image Deblurring:  
A Closer Look at  
the Results  
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  Results: The Good and the Bad 
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The results look great!  
We get a strong deblurring effect  

just as desired  

However  
This is not the result we expected !! 

Let’s explain why 



  Results: The Residual 
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The residual we get is smaller 
than the true error, which means 

that the chosen O is too small 
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This is the function we are minimizing 
 
 
 

� If the residual does not match the 
noise energy (being smaller), we 
should choose a bigger O 

 

� This in turn means that we will 
lose on the high intermediate peak 
performance we saw 

 
But this is not all … 



  Results: Sparsity ?  
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Here is the major difficulty:  
 

� The solution we get is not sparse 
at all, and especially so around 
the first iterations where the peak 
was obtained (140,000NZ) 

� Recall: the dimension of the  
signal is 2562, so we expect the 
minimizer of our function to have 
2562 non-zeros at the most 

� This comes back to the fact that 
the algorithm has not converged 



  Results: Sparsity ?  
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So, what shall we do?  
 

� Run the FISTA for many more 
iterations in order to get the true 
optimal and sparse result, and 
then see what we get 

� Do the above with a proper O 
(0.17 was found to be suitable) so 
as to get the proper residual 

Algorithm: FISTA  
200,000 iterations, O=0.17 
 

Results: NNZ=18,460 (This is Sparse!) 
 Residual=1.4144 
 f(200,000)/f(1000)=0.985 
  

 ISNR=3.77dB !!! 

So, why have we gotten such a lovely 
deblurring with a dense solution ? 



  Results: Running till Convergence  
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  Results: Running till Convergence  
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This is the restored 
image (3.77dB) – 

reasonably sharper but 
with some distortions 



  Explanations ? 
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Observation:  
Sparsaland  works 

  

Harnessing Sparseland for image 
deblurring, we minimized 

 
 

This led to a 3.77dB improvement 
over z, & with a sparse 

representation (18,460 NZ) 
 

However … 

� � 2
1 2

1
f z

2
D  O D � � DHD

We observe a strange behavior 
  

While minimizing this function, we 
encountered a MUCH better solution 
(7.18dB), obtained after only ~70 

iterations, and having a very dense 
representation (140,000 NZ) 

 

How Come ? 
 

Answers: (1) MMSE Estimation 
(2) Properties of CSC Model 
(3) Global vs. Local Modeling 



  So, What Next ?  
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We will certainly come back to 
the issue of getting a non-
sparse solution, with an 
attempt to explain this 

phenomenon 
 

But first, let’s discuss the 
choice of the dictionary, as this 

is a key step in deploying 
Sparseland  

 


