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Calculus Primer

Calculus Primer

Goal: This section provides a brief review of various calculus tidbits
that we’ll be using later on.

First of all, let’s suppose that f(x) is a function that maps values of x
from a certain domain X to a certain range Y , which we can denote
by the shorthand f : X → Y .

Example If f(x) = x2, then the function takes x-values from the
real line R to the nonnegative portion of the real line R+.
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Calculus Primer

Definition We say that f(x) is a continuous function if, for any x0

and x ∈ X , we have limx→x0 f(x) = f(x0), where “lim” denotes a
limit and f(x) is assumed to exist for all x ∈ X .

Example The function f(x) = 3x2 is continuous for all x. The
function f(x) = bxc (round down to the nearest integer, e.g.,
b3.4c = 3) has a “jump” discontinuity at any integer x. 2

Definition If f(x) is continuous, then it is differentiable (has a
derivative) if

d

dx
f(x) ≡ f ′(x) ≡ lim

h→0

f(x+ h)− f(x)

h

exists and is well-defined for any given x. Think of the derivative as
the slope of the function.
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Calculus Primer

Example Some well-known derivatives are:

[xk]′ = kxk−1,

[ex]′ = ex,

[sin(x)]′ = cos(x),

[cos(x)]′ = − sin(x),

[`n(x)]′ =
1

x
,

[arctan(x)]′ =
1

1 + x2
. 2
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Calculus Primer

Theorem Some well-known properties of derivatives are:

[af(x) + b]′ = af ′(x),

[f(x) + g(x)]′ = f ′(x) + g′(x),

[f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x) (product rule),

[
f(x)

g(x)

]′
=

g(x)f ′(x)− f(x)g′(x)

g2(x)
(quotient rule)1,

[f(g(x))]′ = f ′(g(x))g′(x) (chain rule)2.

1Ho dee Hi minus Hi dee Ho over Ho Ho.
2www.youtube.com/watch?v=gGAiW5dOnKo
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Calculus Primer

Example Suppose that f(x) = x2 and g(x) = `n(x). Then

[f(x)g(x)]′ =
d

dx
x2`n(x) = 2x`n(x) + x,

[
f(x)

g(x)

]′
=

d

dx

x2

`n(x)
=

2x`n(x)− x
`n2(x)

,

[f(g(x))]′ = 2g(x)g′(x) =
2`n(x)

x
. 2
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Calculus Primer

Remark The second derivative f ′′(x) ≡ d
dxf
′(x) and is the “slope of

the slope.” If f(x) is “position,” then f ′(x) can be regarded as
“velocity,” and as f ′′(x) as “acceleration.”

The minimum or maximum of f(x) can only occur when the slope of
f(x) is zero, i.e., only when f ′(x) = 0, say at x = x0. Exception:
Check the endpoints of your interval of interest as well.

Then if f ′′(x0) < 0, you get a max; if f ′′(x0) > 0, you get a min; and
if f ′′(x0) = 0, you get a point of inflection.

Example Find the value of x that minimizes f(x) = e2x + e−x. The
minimum can only occur when f ′(x) = 2e2x − e−x = 0. After a little
algebra, we find that this occurs at x0 = −(1/3)`n(2) ≈ −0.231. It’s
also easy to show that f ′′(x) > 0 for all x; and so x0 yields a
minimum. 2
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Calculus Primer

Finding Zeroes: Speaking of solving for a 0, how might you do it if
a continuous function g(x) is a complicated nonlinear fellow?

Trial-and-error (not so great).

Bisection (divide-and-conquer).

Newton’s method (or some variation)

Fixed-point method (we’ll do this later).
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Calculus Primer

Bisection: Suppose you can find x1 and x2 such that g(x1) < 0 and
g(x2) > 0. (We’ll follow similar logic if the inequalities are both
reversed.) By the Intermediate Value Theorem (which you may
remember), there must be a zero in [x1, x2], that is, x? ∈ [x1, x2] such
that g(x?) = 0.

Thus, take x3 = (x1 + x2)/2. If g(x3) < 0, then there must be a zero
in [x3, x2]. Otherwise, if g(x3) > 0, then there must be a zero in
[x1, x3]. In either case, you’ve reduced the length of the search
interval.

Continue in this same manner until the length of the search interval is
as small as desired.

Exercise: Try this out for g(x) = x2 − 2, and come up with an
approximation for

√
2.
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Calculus Primer

Newton’s Method: Suppose you can find a reasonable first guess
for the zero, say, xi, where we start off at iteration i = 0. If g(x) has a
nice, well-behaved derivative (which doesn’t happen to be too flat
near the zero of g(x)), then iterate your guess as follows:

xi+1 = xi −
g(xi)

g′(xi)
.

Keep going until things appear to converge.

This makes sense since for xi and xi+1 close to each other and the
zero x?, we have

g′(xi) ≈
g(x?)− g(xi)

x? − xi
.
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Calculus Primer

Exercise: Try Newton out for g(x) = x2 − 2, noting that the
iteration step is to set

xi+1 = xi −
x2
i − 2

2xi
=

xi
2

+
1

xi
.

Let’s start with a bad guess of x1 = 1. Then

x2 =
x1

2
+

1

x1
=

1

2
+ 1 = 1.5

x3 =
x2

2
+

1

x2
≈ 1.5

2
+

1

1.5
= 1.4167

x4 =
x3

2
+

1

x3
≈ 1.4142 Wow! 2
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Calculus Primer

Integration

Definition The function F (x) having derivative f(x) is called the
antiderivative (or indefinite integral). It is denoted by
F (x) =

∫
f(x) dx.

Fundamental Theorem of Calculus: If f(x) is continuous, then
the area under the curve for x ∈ [a, b] is denoted and given by the
definite integral 3

∫ b

a
f(x) dx ≡ F (x)

∣∣∣∣b
a

≡ F (b)− F (a).

3“I’m really an integral!”
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Calculus Primer

Example Some well-known indefinite integrals are:∫
xk dx =

xk+1

k + 1
+ C for k 6= −1

∫
dx

x
= `n|x|+ C,∫

ex dx = ex + C,∫
cos(x) dx = sin(x) + C,∫
dx

1 + x2
= arctan(x) + C,

where C is an arbitrary constant. 2
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Calculus Primer

Example It is easy to see that∫
d cabin

cabin
= `n|cabin|+ C = houseboat. 2

Theorem Some well-known properties of definite integrals are:∫ a

a
f(x) dx = 0,

∫ b

a
f(x) dx = −

∫ a

b
f(x) dx,

∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.
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Theorem Some other properties of general integrals are:∫
[f(x) + g(x)] dx =

∫
f(x) dx+

∫
g(x) dx,

∫
f(x)g′(x) dx = f(x)g(x)−

∫
g(x)f ′(x) dx (integration by parts)4,

∫
f(g(x))g′(x) dx =

∫
f(u) du (substitution rule)5.

4www.youtube.com/watch?v=OTzLVIc-O5E
5www.youtube.com/watch?v=eswQl-hcvU0
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Calculus Primer

Example Using integration by parts with f(x) = x and g′(x) = e2x

and the chain rule, we have∫ 1

0
xe2x dx =

xe2x

2

∣∣∣∣1
0

−
∫ 1

0

e2x

2
dx =

e2

2
− e2x

4

∣∣∣∣1
0

=
e2 + 1

4
. 2

Definition Derivatives of arbitrary order k can be written as f (k)(x)

or dk

dxk
f(x). By convention, f (0)(x) = f(x).

The Taylor series expansion of f(x) about a point a is given by

f(x) =

∞∑
k=0

f (k)(a)(x− a)k

k!
.

The Maclaurin series is simply Taylor expanded around a = 0.
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Calculus Primer

Example Here are some famous Maclaurin series.

sin(x) =

∞∑
k=0

(−1)k+1x2k+1

(2k + 1)!
,

cos(x) =

∞∑
k=0

(−1)kx2k

(2k)!
,

ex =

∞∑
k=0

xk

k!
.
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Calculus Primer

Example And while we’re at it, here are some miscellaneous sums
that you should know.

n∑
k=1

k =
n(n+ 1)

2
,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
,

∞∑
k=0

pk =
1

1− p
(for −1 < p < 1).
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Calculus Primer

Theorem Occasionally, we run into trouble when taking
indeterminate ratios of the form 0/0 or∞/∞. In such cases,
L’Hôspital’s Rule6 is useful: If the limits limx→a f(x) and
limx→a g(x) both go to 0 or both go to∞, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Example L’Hôspital shows that

lim
x→0

sin(x)

x
= lim

x→0

cos(x)

1
= 1. 2

6This rule makes me sick.
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Calculus Primer

Computer Exercise: Let’s do some easy integration via Riemann
sums. Simply approximate the area under the nice, continuous
function f(x) from a to b by adding up the areas of n adjacent
rectangles of width ∆x = (b− a)/n and height f(xi), where
xi = a+ i∆x is the right-hand endpoint of the ith rectangle. Thus,∫ b

a
f(x) dx ≈

n∑
i=1

f(xi)∆x =
b− a
n

n∑
i=1

f

(
a+

i(b− a)

n

)
.

In fact, as n→∞, this result becomes an equality.

Try it out on
∫ 1

0 sin(πx/2) dx (which secretly equals 2/π) for
different values of n, and see for yourself.
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Calculus Primer

Riemann (cont’d): Since I’m such a nice guy, I’ve made things
easy for you. In this problem, I’ve thoughtfully taken a = 0 and
b = 1, so that ∆x = 1/n and xi = i/n, which simplifies the notation
a bit. Then ∫ b

a
f(x) dx =

∫ 1

0
f(x) dx

≈
n∑
i=1

f(xi)∆x

=
1

n

n∑
i=1

sin
( πi

2n

)
.

For n = 100, this calculates out to a value of 0.6416, which is pretty
close to the true answer of 2/π ≈ 0.6366. 2
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Calculus Primer

Computer Exercise, Trapezoid version: Same numerical
integration via the Trapezoid Rule (which usually works a little better
than Riemann). Now we have∫ b

a
f(x) dx ≈

[
f(x0)

2
+

n−1∑
i=1

f(xi) +
f(xn)

2

]
∆x

=
b− a
n

[
f(a)

2
+
n−1∑
i=1

f

(
a+

i(b− a)

n

)
+
f(b)

2

]
.

Again try it out on
∫ 1

0 sin(πx/2) dx.
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Computer Exercise, Monte Carlo version: You will soon learn
a Monte Carlo method to accomplish approximate integration. Just
take my word for it for now. Let U1, U2, . . . , Un denote a sequence of
Unif(0,1) random numbers, which can be obtained from Excel using
RAND(). It can be shown that∫ b

a
f(x) dx ≈ b− a

n

n∑
i=1

f(a+ (b− a)Ui),

with the result becoming an equality as n→∞.

Yet again try it out on
∫ 1

0 sin(πx/2) dx.
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Probability Primer

Basics

Basics

Will assume that you know about sample spaces, events, and the
definition of probability.

Definition: P (A|B) ≡ P (A ∩B)/P (B) is the conditional
probability of A given B.

Example: Toss a fair die. Let A = {1, 2, 3} and B = {3, 4, 5, 6}.
Then

P (A|B) =
P (A ∩B)

P (B)
=

1/6

4/6
= 1/4. 2
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Probability Primer

Basics

Definition: If P (A ∩B) = P (A)P (B), then A and B are
independent events.

Theorem: If A and B are independent, then P (A|B) = P (A).

Example: Toss two dice. Let A = “Sum is 7” and
B = “First die is 4”. Then

P (A) = 1/6, P (B) = 1/6, and

P (A ∩B) = P ((4, 3)) = 1/36 = P (A)P (B).

So A and B are independent. 2
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Probability Primer

Basics

Definition: A random variable (RV) X is a function from the
sample space Ω to the real line, i.e., X : Ω→ R.

Example: Let X be the sum of two dice rolls. Then X((4, 6)) = 10.
In addition,

P (X = x) =



1/36 if x = 2

2/36 if x = 3
...

1/36 if x = 12

0 otherwise

2
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Probability Primer

Basics

Definition: If the set of possible values of a RV X is finite or
countably infinite, then X is a discrete RV. Its probability mass
function (pmf) is f(x) ≡ P (X = x). Note that

∑
x f(x) = 1.

Example: Flip 2 coins. Let X be the number of heads.

f(x) =


1/4 if x = 0 or 2

1/2 if x = 1

0 otherwise

2

Examples: Here are some well-known discrete RV’s that you may
know: Bernoulli(p), Binomial(n, p), Geometric(p), Negative
Binomial, Poisson(λ), etc.
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Probability Primer

Basics

Definition: A continuous RV is one with probability zero at every
individual point, and for which there exists a probability density
function (pdf) f(x) such that P (X ∈ A) =

∫
A f(x) dx for every set

A. Note that
∫
R f(x) dx = 1.

Example: Pick a random number between 3 and 7. Then

f(x) =

{
1/4 if 3 ≤ x ≤ 7

0 otherwise
2

Examples: Here are some well-known continuous RV’s:
Uniform(a, b), Exponential(λ), Normal(µ, σ2), etc.

Notation: “∼” means “is distributed as.” For instance,
X ∼ Unif(0, 1) means that X has the uniform distribution on [0,1].
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Basics

Definition: For any RV X (discrete or continuous), the cumulative
distribution function (cdf) is

F (x) ≡ P (X ≤ x) =

{ ∑
y≤x f(y) if X is discrete∫ x

−∞ f(y) dy if X is continuous

Note that limx→−∞ F (x) = 0 and limx→∞ F (x) = 1. In addition, if
X is continuous, then d

dxF (x) = f(x).

Example: Flip 2 coins. Let X be the number of heads.

F (x) =


0 if x < 0

1/4 if 0 ≤ x < 1

3/4 if 1 ≤ x < 2

1 if x ≥ 2

2

Example: if X ∼ Exp(λ) (i.e., X is exponential with parameter λ),
then f(x) = λe−λx and F (x) = 1− e−λx, x ≥ 0. 2
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Simulating Random Variables

Simulating Random Variables

We’ll make a brief aside here to show how to simulate some very
simple random variables.

Example (Discrete Uniform): Consider a D.U. on {1, 2, . . . , n},
i.e., X = i with probability 1/n for i = 1, 2, . . . , n. (Think of this as
an n-sided dice toss for you Dungeons and Dragons fans.)

If U ∼ Unif(0, 1), we can obtain a D.U. random variate simply by
setting X = dnUe, where d·e is the “ceiling” (or “round up”)
function.

For example, if n = 10 and we sample a Unif(0,1) random variable
U = 0.73, then X = d7.3e = 8. 2
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Simulating Random Variables

Example (Another Discrete Random Variable):

P (X = x) =


0.25 if x = −2

0.10 if x = 3

0.65 if x = 4.2

0 otherwise

Can’t use a die toss to simulate this random variable. Instead, use
what’s called the inverse transform method.

x f(x) P (X ≤ x) Unif(0,1)’s

−2 0.25 0.25 [0.00, 0.25]
3 0.10 0.35 (0.25, 0.35]

4.2 0.65 1.00 (0.35, 1.00)

Sample U ∼ Unif(0, 1). Choose the corresponding x-value, i.e.,
X = F−1(U). For example, U = 0.46 means that X = 4.2. 2

33 / 104



Probability Primer

Simulating Random Variables

Now we’ll use the inverse transform method to generate a continuous
random variable. We’ll talk about the following result a little later. . .

Theorem: If X is a continuous random variable with cdf F (x), then
the random variable F (X) ∼ Unif(0, 1).

This suggests a way to generate realizations of the RV X . Simply set
F (X) = U ∼ Unif(0, 1) and solve for X = F−1(U).

Example: Suppose X ∼ Exp(λ). Then F (x) = 1− e−λx for x > 0.
Set F (X) = 1− e−λX = U . Solve for X ,

X =
−1

λ
`n(1− U) ∼ Exp(λ). 2

34 / 104



Probability Primer

Simulating Random Variables

Example (Generating Uniforms): All of the above RV generation
examples relied on our ability to generate a Unif(0,1) RV. For now,
let’s assume that we can generate numbers that are “practically” iid
Unif(0,1).

If you don’t like programming, you can use Excel function RAND()
or something similar to generate Unif(0,1)’s.

Here’s an algorithm to generate pseudo-random numbers (PRN’s),
i.e., a series R1, R2, . . . of deterministic numbers that appear to be iid
Unif(0,1). Pick a seed integer X0, and calculate

Xi = 16807Xi−1mod(231 − 1), i = 1, 2, . . . .

Then set Ri = Xi/(2
31 − 1), i = 1, 2, . . ..
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Simulating Random Variables

Here’s an easy FORTRAN implementation of the above algorithm
(from Bratley, Fox, and Schrage).

FUNCTION UNIF(IX)
K1 = IX/127773 (this division truncates, e.g., 5/3 = 1.)
IX = 16807*(IX - K1*127773) - K1*2836 (update seed)
IF(IX.LT.0)IX = IX + 2147483647
UNIF = IX * 4.656612875E-10
RETURN
END

In the above function, we input a positive integer IX and the function
returns the PRN UNIF, as well as an updated IX that we can use
again. 2
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Simulating Random Variables

Some Exercises: In the following, I’ll assume that you can use
Excel (or whatever) to simulate independent Unif(0,1) RV’s. (We’ll
review independence in a little while.)

1 Make a histogram of Xi = −`n(Ui), for i = 1, 2, . . . , 10000,
where the Ui’s are independent Unif(0,1) RV’s. What kind of
distribution does it look like?

2 Suppose Xi and Yi are independent Unif(0,1) RV’s,
i = 1, 2, . . . , 10000. Let Zi =

√
−2`n(Xi) sin(2πYi), and

make a histogram of the Zi’s based on the 10000 replications.

3 Suppose Xi and Yi are independent Unif(0,1) RV’s,
i = 1, 2, . . . , 10000. Let Zi = Xi/(Xi − Yi), and make a
histogram of the Zi’s based on the 10000 replications. This may
be somewhat interesting. It’s possible to derive the distribution
analytically, but it takes a lot of work.
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Great Expectations

Great Expectations

Definition: The expected value (or mean) of a RV X is

E[X] ≡

{ ∑
x xf(x) if X is discrete∫

R xf(x) dx if X is continuous
=

∫
R
x dF (x).

Example: Suppose that X ∼ Bernoulli(p). Then

X =

{
1 with prob. p

0 with prob. 1− p (= q)

and we have E[X] =
∑

x xf(x) = p. 2
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Great Expectations

Example: Suppose that X ∼ Uniform(a, b). Then

f(x) =

{
1
b−a if a < x < b

0 otherwise

and we have E[X] =
∫
R xf(x) dx = (a+ b)/2. 2

Example: Suppose that X ∼ Exponential(λ). Then

f(x) =

{
λe−λx if x > 0

0 otherwise

and we have (after integration by parts and L’Hôspital’s Rule)

E[X] =

∫
R
xf(x) dx =

∫ ∞
0

xλe−λx dx =
1

λ
. 2
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Great Expectations

Def/Thm: (the “Law of the Unconscious Statistician” or “LOTUS”):
Suppose that h(X) is some function of the RV X . Then

E[h(X)] =

{ ∑
x h(x)f(x) if X is disc∫

R h(x)f(x) dx if X is cts
=

∫
R
h(x) dF (x).

The function h(X) can be anything “nice”, e.g., h(X) = X2 or 1/X
or sin(X) or `n(X).
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Great Expectations

Example: Suppose X is the following discrete RV:

x 2 3 4

f(x) 0.3 0.6 0.1

Then E[X3] =
∑

x x
3f(x) = 8(0.3) + 27(0.6) + 64(0.1) = 25. 2

Example: Suppose X ∼ Unif(0, 2). Then

E[Xn] =

∫
R
xnf(x) dx = 2n/(n+ 1). 2
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Great Expectations

Definitions: E[Xn] is the nth moment of X .

E[(X − E[X])n] is the nth central moment of X .

Var(X) ≡ E[(X − E[X])2] is the variance of X .

The standard deviation of X is
√

Var(X).

Theorem: Var(X) = E[X2]− (E[X])2 (sometimes easier to
calculate this way).
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Great Expectations

Example: Suppose X ∼ Bern(p). Recall that E[X] = p. Then

E[X2] =
∑
x

x2f(x) = p and

Var(X) = E[X2]− (E[X])2 = p(1− p). 2

Example: Suppose X ∼ Exp(λ). By LOTUS,

E[Xn] =

∫ ∞
0

xnλe−λx dx = n!/λn.

Var(X) = E[X2]− (E[X])2 =
2

λ2
−
( 1

λ

)2
= 1/λ2. 2
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Great Expectations

Theorem: E[aX + b] = aE[X] + b and Var(aX + b) = a2Var(X).

Example: If X ∼ Exp(3), then

E[−2X + 7] = −2E[X] + 7 = −2

3
+ 7.

Var(−2X + 7) = (−2)2Var(X) =
4

9
. 2
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Great Expectations

Definition: MX(t) ≡ E[etX ] is the moment generating function
(mgf) of the RV X . (MX(t) is a function of t, not of X!)

Example: X ∼ Bern(p). Then

MX(t) = E[etX ] =
∑
x

etxf(x) = et·1p+ et·0q = pet + q. 2

Example: X ∼ Exp(λ). Then

MX(t) =

∫
<
etxf(x) dx = λ

∫ ∞
0

e(t−λ)x dx =
λ

λ− t
if λ > t. 2

Theorem: Under certain technical conditions,

E[Xk] =
dk

dtk
MX(t)

∣∣∣∣
t=0

, k = 1, 2, . . . .

Thus, you can generate the moments of X from the mgf.
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Example: X ∼ Exp(λ). Then MX(t) = λ
λ−t for λ > t. So

E[X] =
d

dt
MX(t)

∣∣∣∣
t=0

=
λ

(λ− t)2

∣∣∣∣
t=0

= 1/λ.

Further,

E[X2] =
d2

dt2
MX(t)

∣∣∣∣
t=0

=
2λ

(λ− t)3

∣∣∣∣
t=0

= 2/λ2.

Thus,

Var(X) = E[X2]− (E[X])2 =
2

λ2
− 1

λ2
= 1/λ2. 2

Moment generating functions have many other important uses, some
of which we’ll talk about in this course.
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Functions of a Random Variable

Problem: Suppose we have a RV X with pmf/pdf f(x). Let
Y = h(X). Find g(y), the pmf/pdf of Y .

Examples (take my word for it for now):

If X ∼ Nor(0, 1), then Y = X2 ∼ χ2(1).

If U ∼ Unif(0, 1), then Y = − 1
λ`n(U) ∼ Exp(λ).
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Discrete Example: Let X denote the number of H’s from two coin
tosses. We want the pmf for Y = X3 −X .

x 0 1 2

f(x) 1/4 1/2 1/4

y = x3 − x 0 0 6

This implies that g(0) = P (Y = 0) = P (X = 0 or 1) = 3/4 and
g(6) = P (Y = 6) = 1/4. In other words,

g(y) =

{
3/4 if y = 0

1/4 if y = 6
. 2
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Continuous Example: Suppose X has pdf f(x) = |x|,
−1 ≤ x ≤ 1. Find the pdf of Y = X2.

First of all, the cdf of Y is

G(y) = P (Y ≤ y)

= P (X2 ≤ y)

= P (−√y ≤ X ≤ √y)

=

∫ √y
−√y
|x| dx = y, 0 < y < 1.

Thus, the pdf of Y is g(y) = G′(y) = 1, 0 < y < 1, indicating that
Y ∼ Unif(0, 1). 2
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Inverse Transform Theorem: Suppose X is a continuous random
variable having cdf F (x). Then, amazingly, F (X) ∼ Unif(0, 1).

Proof: Let Y = F (X). Then the cdf of Y is

P (Y ≤ y) = P (F (X) ≤ y)

= P (X ≤ F−1(y))

= F (F−1(y)) = y,

which is the cdf of the Unif(0,1). 2

This result is of fundamental importance when it comes to generating
random variates during a simulation.
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Example (how to generate exponential RV’s): Suppose
X ∼ Exp(λ), with cdf F (x) = 1− e−λx for x ≥ 0.

So the Inverse Transform Theorem implies that

F (X) = 1− e−λX ∼ Unif(0, 1).

Let U ∼ Unif(0, 1) and set F (X) = U . Then we have

X =
−1

λ
`n(1− U) ∼ Exp(λ).

For instance, if λ = 2 and U = 0.27, then X = 0.157 is an Exp(2)
realization. 2
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Exercise: Suppose that X has the Weibull distribution with cdf

F (x) = 1− e−(λx)β , x > 0.

If you set F (X) = U and solve for X , show that you get

X =
1

λ
[−`n(1− U)]1/β .

Now pick your favorite λ and β, and use this result to generate values
of X . In fact, make a histogram of your X values. Are there any
interesting values of λ and β you could’ve chosen?
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Bonus Theorem: Here’s another way to get the pdf of Y = h(X)
for some nice continuous function h(·). The cdf of Y is

FY (y) = P (Y ≤ y) = P (h(X) ≤ y) = P (X ≤ h−1(y)).

By the chain rule (and since a pdf must be ≥ 0), the pdf of Y is

fY (y) =
d

dy
FY (y) = fX(h−1(y))

∣∣∣∣ ddyh−1(y)

∣∣∣∣ .
And now, here’s how to prove LOTUS!

E[Y ] =

∫
R
yfY (y) dy =

∫
R
yfX(h−1(y))

∣∣∣∣ ddyh−1(y)

∣∣∣∣ dy
“=”

∫
R
yfX(h−1(y)) dh−1(y) =

∫
R
h(x)fX(x) dx. 2
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Jointly Distributed Random Variables

Consider two random variables interacting together — think height
and weight.

Definition: The joint cdf of X and Y is

F (x, y) ≡ P (X ≤ x, Y ≤ y), for all x, y.

Remark: The marginal cdf of X is FX(x) = F (x,∞). (We use the
X subscript to remind us that it’s just the cdf of X all by itself.)
Similarly, the marginal cdf of Y is FY (y) = F (∞, y).
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Definition: If X and Y are discrete, then the joint pmf of X and Y is
f(x, y) ≡ P (X = x, Y = y). Note that

∑
x

∑
y f(x, y) = 1.

Remark: The marginal pmf of X is

fX(x) = P (X = x) =
∑
y

f(x, y).

The marginal pmf of Y is

fY (y) = P (Y = y) =
∑
x

f(x, y).

Example: The following table gives the joint pmf f(x, y), along
with the accompanying marginals.

f(x, y) X = 2 X = 3 X = 4 fY (y)

Y = 4 0.3 0.2 0.1 0.6

Y = 6 0.1 0.2 0.1 0.4

fX(x) 0.4 0.4 0.2 1 55 / 104
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Definition: If X and Y are continuous, then the joint pdf of X and
Y is f(x, y) ≡ ∂2

∂x∂yF (x, y). Note that
∫
R
∫
R f(x, y) dx dy = 1.

Remark: The marginal pdf’s of X and Y are

fX(x) =

∫
R
f(x, y) dy and fY (y) =

∫
R
f(x, y) dx.

Example: Suppose the joint pdf is

f(x, y) =
21

4
x2y, x2 ≤ y ≤ 1.

Then the marginal pdf’s are:

fX(x) =

∫
R
f(x, y) dy =

∫ 1

x2

21

4
x2y dy =

21

8
x2(1−x4), −1 ≤ x ≤ 1

and

fY (y) =

∫
R
f(x, y) dx =

∫ √y
−√y

21

4
x2y dx =

7

2
y5/2, 0 ≤ y ≤ 1. 2
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Definition: X and Y are independent RV’s if

f(x, y) = fX(x)fY (y) for all x, y.

Theorem: X and Y are indep if you can write their joint pdf as
f(x, y) = a(x)b(y) for some functions a(x) and b(y), and x and y
don’t have funny limits (their domains do not depend on each other).

Examples: If f(x, y) = cxy for 0 ≤ x ≤ 2, 0 ≤ y ≤ 3, then X and
Y are independent.

If f(x, y) = 21
4 x

2y for x2 ≤ y ≤ 1, then X and Y are not
independent.

If f(x, y) = c/(x+ y) for 1 ≤ x ≤ 2, 1 ≤ y ≤ 3, then X and Y are
not independent. 2
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Definition: The conditional pdf (or pmf ) of Y given X = x is
f(y|x) ≡ f(x, y)/fX(x) (assuming fX(x) > 0).

This is a legit pmf/pdf. For example, in the continuous case,∫
R f(y|x) dy = 1, for any x.

Example: Suppose f(x, y) = 21
4 x

2y for x2 ≤ y ≤ 1. Then

f(y|x) =
f(x, y)

fX(x)
=

21
4 x

2y
21
8 x

2(1− x4)
=

2y

1− x4
, x2 ≤ y ≤ 1. 2

Theorem: If X and Y are indep, then f(y|x) = fY (y) for all x, y.

Proof: By definition of conditional and independence,

f(y|x) =
f(x, y)

fX(x)
=

fX(x)fY (y)

fX(x)
. 2
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Definition: The conditional expectation of Y given X = x is

E[Y |X = x] ≡

{ ∑
y yf(y|x) discrete∫

R yf(y|x) dy continuous

Example: The expected weight of a person who is 7 feet tall
(E[Y |X = 7]) will probably be greater than that of a random person
from the entire population (E[Y ]).

Old Cts Example: f(x, y) = 21
4 x

2y, if x2 ≤ y ≤ 1. Then

E[Y |x] =

∫
R
yf(y|x) dy =

∫ 1

x2

2y2

1− x4
dy =

2

3
· 1− x6

1− x4
. 2
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Theorem (double expectations): E[E(Y |X)] = E[Y ].

Proof (cts case): By the Unconscious Statistician,

E[E(Y |X)] =

∫
R

E(Y |x)fX(x) dx

=

∫
R

(∫
R
yf(y|x) dy

)
fX(x) dx

=

∫
R

∫
R
yf(y|x)fX(x) dx dy

=

∫
R
y

∫
R
f(x, y) dx dy

=

∫
R
yfY (y) dy = E[Y ]. 2
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Old Example: Suppose f(x, y) = 21
4 x

2y, if x2 ≤ y ≤ 1. By
previous examples, we know fX(x), fY (y), and E[Y |x]. Find E[Y ].

Solution #1 (old, boring way):

E[Y ] =

∫
R
yfY (y) dy =

∫ 1

0

7

2
y7/2 dy =

7

9
.

Solution #2 (new, exciting way):

E[Y ] = E[E(Y |X)] =

∫
R

E(Y |x)fX(x) dx

=

∫ 1

−1

(
2

3
· 1− x6

1− x4

)(
21

8
x2(1− x4)

)
dx =

7

9
.

Notice that both answers are the same (good)! 2
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Example: A cutesy way to calculate the mean of the Geometric
distribution.

Let Y ∼ Geom(p), e.g., Y could be the number of coin flips before H
appears, where P (H) = p. From Baby Probability class, we know
that the pmf of Y is fY (y) = P (Y = y) = qy−1p, for y = 1, 2, . . ..

Then the old-fashioned way to calculate the mean is:

E[Y ] =
∑
y

yfY (y) =
∞∑
y=1

yqy−1p = 1/p,

where the last step follows because I tell you so. 2

But if you are not quite willing to believe me,. . .
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. . . Let’s use double expectation to do what’s called a “standard
one-step conditioning argument”. Define X = 1 if the first flip is H;
and X = 0 otherwise.

Based on the result X of the first step, we have

E[Y ] = E[E(Y |X)] =
∑
x

E(Y |x)fX(x)

= E(Y |X = 0)P (X = 0) + E(Y |X = 1)P (X = 1)

= (1 + E[Y ])(1− p) + 1(p). (why?)

Solving, we get E[Y ] = 1/p again! 2

63 / 104



Probability Primer

Jointly Distributed Random Variables

Computing Probabilities by Conditioning

Let A be some event, and define the RV Y = 1 if A occurs; and
Y = 0 otherwise. Then

E[Y ] =
∑
y

yfY (y) = P (Y = 1) = P (A).

Similarly, for any RV X , we have

E[Y |X = x] =
∑
y

yfY (y|x) = P (Y = 1|X = x) = P (A|X = x).
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Thus,
P (A) = E[Y ] = E[E(Y |X)]

=

∫
R

E[Y |X = x]dFX(x)

=

∫
R
P (A|X = x)dFX(x).

Example/Theorem: If X and Y are independent cts RV’s, then

P (Y < X) =

∫
R
P (Y < x)fX(x) dx.

Proof: Follows from above result if we let the event A = {Y < X}.
2
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Example: If X ∼ Exp(µ) and Y ∼ Exp(λ) are indep RV’s, then

P (Y < X) =

∫
R
P (Y < x)fX(x) dx

=

∫ ∞
0

(1− e−λx)µe−µx dx

=
λ

λ+ µ
. 2

66 / 104



Probability Primer

Jointly Distributed Random Variables

Theorem (variance decomposition):

Var(Y ) = E [Var(Y |X)] + Var [E(Y |X)]

Proof (from Ross): By definition of variance and double expectation,

E [Var(Y |X)] = E
[
E(Y 2|X)− {E(Y |X)}2

]
= E(Y 2)− E

[
{E(Y |X)}2

]
.

Similarly,

Var [E(Y |X)] = E
[
{E(Y |X)}2

]
− {E [E(Y |X)]}2

= E
[
{E(Y |X)}2

]
− {E(Y )}2 .

Thus,

E [Var(Y |X)]+Var [E(Y |X)] = E(Y 2)−{E(Y )}2 = Var(Y ). 2
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“Definition” (two-dimensional LOTUS): Suppose that h(X,Y ) is
some function of the RV’s X and Y . Then

E[h(X,Y )] =

{ ∑
x

∑
y h(x, y)f(x, y) if (X,Y ) is discrete∫

R
∫
R h(x, y)f(x, y) dx dy if (X,Y ) is continuous

Theorem: Whether or not X and Y are independent, we have
E[X + Y ] = E[X] + E[Y ].

Theorem: If X and Y are independent, then
Var(X + Y ) = Var(X) + Var(Y ).

(Stay tuned for dependent case.)
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Definition: X1, . . . , Xn form a random sample from f(x) if (i)
X1, . . . , Xn are independent, and (ii) each Xi has the same pdf (or
pmf) f(x).

Notation: X1, . . . , Xn
iid∼ f(x). (The term “iid” reads independent

and identically distributed.)

Example: If X1, . . . , Xn
iid∼ f(x) and the sample mean

X̄n ≡
∑n

i=1Xi/n, then E[X̄n] = E[Xi] and Var(X̄n) = Var(Xi)/n.
Thus, the variance decreases as n increases. 2

But not all RV’s are independent...
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Covariance and Correlation
Definition: The covariance between X and Y is

Cov(X,Y ) ≡ E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ].

Note that Var(X) = Cov(X,X).

Theorem: If X and Y are independent RV’s, then Cov(X,Y ) = 0.

Remark: Cov(X,Y ) = 0 doesn’t mean X and Y are independent!

Example: Suppose X ∼ Unif(−1, 1) and Y = X2. Then X and Y
are clearly dependent. However,

Cov(X,Y ) = E[X3]−E[X]E[X2] = E[X3] =

∫ 1

−1

x3

2
dx = 0. 2
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Theorem: Cov(aX, bY ) = abCov(X,Y ).

Theorem: Whether or not X and Y are independent,

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

and

Var(X − Y ) = Var(X) + Var(Y )− 2Cov(X,Y ).

Definition: The correlation between X and Y is

ρ ≡ Cov(X,Y )√
Var(X)Var(Y )

.

Theorem: −1 ≤ ρ ≤ 1.
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Example: Consider the following joint pmf.

f(x, y) X = 2 X = 3 X = 4 fY (y)

Y = 40 0.00 0.20 0.10 0.3

Y = 50 0.15 0.10 0.05 0.3

Y = 60 0.30 0.00 0.10 0.4

fX(x) 0.45 0.30 0.25 1

E[X] = 2.8, Var(X) = 0.66, E[Y ] = 51, Var(Y ) = 69,

E[XY ] =
∑
x

∑
y

xyf(x, y) = 140,

and

ρ =
E[XY ]− E[X]E[Y ]√

Var(X)Var(Y )
= −0.415. 2
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Portfolio Example: Consider two assets, S1 and S2, with expected
returns E[S1] = µ1 and E[S2] = µ2, and variabilities Var(S1) = σ2

1 ,
Var(S2) = σ2

2 , and Cov(S1, S2) = σ12.

Define a portfolio P = wS1 + (1− w)S2, where w ∈ [0, 1]. Then

E[P ] = wµ1 + (1− w)µ2

Var(P ) = w2σ2
1 + (1− w)2σ2

2 + 2w(1− w)σ12.

Setting d
dwVar(P ) = 0, we obtain the critical point that (hopefully)

minimizes the variance of the portfolio,

w =
σ2

2 − σ12

σ2
1 + σ2

2 − 2σ12
. 2
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Portfolio Exercise: Suppose E[S1] = 0.2, E[S2] = 0.1,
Var(S1) = 0.2, Var(S2) = 0.4, and Cov(S1, S2) = −0.1.

What value of w maximizes the expected return of the portfolio?

What value of w minimizes the variance? (Note the negative
covariance I’ve introduced into the picture.)

Let’s talk trade-offs.
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Some Probability Distributions
First, some discrete distributions. . .

X ∼ Bernoulli(p).

f(x) =

{
p if x = 1

1− p (= q) if x = 0

E[X] = p, Var(X) = pq, MX(t) = pet + q.

Y ∼ Binomial(n, p). If X1, X2, . . . , Xn
iid∼ Bern(p) (i.e.,

Bernoulli(p) trials), then Y =
∑n

i=1Xi ∼ Bin(n, p).

f(y) =

(
n

y

)
pyqn−y, y = 0, 1, . . . , n.

E[Y ] = np, Var(Y ) = npq, MY (t) = (pet + q)n.
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X ∼ Geometric(p) is the number of Bern(p) trials until a success
occurs. For example, “FFFS” implies that X = 4.

f(x) = qx−1p, x = 1, 2, . . . .

E[X] = 1/p, Var(X) = q/p2, MX(t) = pet/(1− qet).

Y ∼ NegBin(r, p) is the sum of r iid Geom(p) RV’s, i.e., the time
until the rth success occurs. For example, “FFFSSFS” implies that
NegBin(3, p) = 7.

f(y) =

(
y − 1

r − 1

)
qy−rpr, y = r, r + 1, . . . .

E[Y ] = r/p, Var(Y ) = qr/p2.
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X ∼ Poisson(λ).

Definition: A counting process N(t) tallies the number of “arrivals”
observed in [0, t]. A Poisson process is a counting process satisfying
the following.

i. Arrivals occur one-at-a-time at rate λ (e.g., λ = 4 customers/hr)
ii. Independent increments, i.e., the numbers of arrivals in disjoint

time intervals are independent.
iii. Stationary increments, i.e., the distribution of the number of

arrivals in [s, s+ t] only depends on t.

X ∼ Pois(λ) is the number of arrivals that a Poisson process
experiences in one time unit, i.e., N(1).

f(x) =
e−λλx

x!
, x = 0, 1, . . . .

E[X] = λ = Var(X), MX(t) = eλ(et−1).
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Now, some continuous distributions. . .

X ∼ Uniform(a, b). f(x) = 1
b−a for a ≤ x ≤ b, E[X] = a+b

2 ,

Var(X) = (b−a)2

12 , MX(t) = (etb − eta)/(tb− ta).

X ∼ Exponential(λ). f(x) = λe−λx for x ≥ 0, E[X] = 1/λ,
Var(X) = 1/λ2, MX(t) = λ/(λ− t) for t < λ.

Theorem: The exponential distribution has the memoryless property
(and is the only continuous distribution with this property), i.e., for
s, t > 0, P (X > s+ t|X > s) = P (X > t).

Example: Suppose X ∼ Exp(λ = 1/100). Then

P (X > 200|X > 50) = P (X > 150) = e−λt = e−150/100. 2

78 / 104



Probability Primer

Some Probability Distributions

X ∼ Gamma(α, λ).

f(x) =
λαxα−1e−λx

Γ(α)
, x ≥ 0,

where the gamma function is

Γ(α) ≡
∫ ∞

0
tα−1e−t dt.

E[X] = α/λ, Var(X) = α/λ2, MX(t) =
[
λ/(λ− t)

]α
for t < λ.

If X1, X2, . . . , Xn
iid∼ Exp(λ), then Y ≡

∑n
i=1Xi ∼ Gamma(n, λ).

The Gamma(n, λ) is also called the Erlangn(λ). It has cdf

FY (y) = 1− e−λy
n−1∑
j=0

(λy)j

j!
, y ≥ 0.
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X ∼ Triangular(a, b, c). Good for modeling things with limited
data — a is the smallest possible value, b is the “most likely,” and c is
the largest.

f(x) =


2(x−a)

(b−a)(c−a) if a < x ≤ b
2(c−x)

(c−b)(c−a) if b < x ≤ c
0 otherwise

.

E[X] = (a+ b+ c)/3.

X ∼ Beta(a, b). f(x) = Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1 for 0 ≤ x ≤ 1 and
a, b > 0.

E[X] =
a

a+ b
and Var(X) =

ab

(a+ b)2(a+ b+ 1)
.
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X ∼ Normal(µ, σ2). Most important distribution.

f(x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
, x ∈ R.

E[X] = µ, Var(X) = σ2, and MX(t) = exp(µt+ 1
2σ

2t2).

Theorem: If X ∼ Nor(µ, σ2), then aX + b ∼ Nor(aµ+ b, a2σ2).

Corollary: If X ∼ Nor(µ, σ2), then Z ≡ X−µ
σ ∼ Nor(0, 1), the

standard normal distribution, with pdf φ(z) ≡ 1√
2π
e−z

2/2 and cdf
Φ(z), which is tabled. E.g., Φ(1.96)

.
= 0.975.

Theorem: If X1 and X2 are independent with Xi ∼ Nor(µi, σ
2
i ),

i = 1, 2, then X1 +X2 ∼ Nor(µ1 + µ2, σ
2
1 + σ2

2).

Example: Suppose X ∼ Nor(3, 4), Y ∼ Nor(4, 6), and X and Y
are independent. Then 2X − 3Y + 1 ∼ Nor(−5, 70). 2
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Limit Theorems

Corollary (of a previous theorem): If X1, . . . , Xn are iid Nor(µ, σ2),
then the sample mean X̄n ∼ Nor(µ, σ2/n).

This is a special case of the Law of Large Numbers, which says that
X̄n approximates µ well as n becomes large.

Definition: The sequence of RV’s Y1, Y2, . . . with respective cdf’s
FY1(y), FY2(y), . . . converges in distribution to the RV Y having cdf
FY (y) if limn→∞ FYn(y) = FY (y) for all y belonging to the

continuity set of Y . Notation: Yn
d−→ Y .

Idea: If Yn
d−→ Y and n is large, then you ought to be able to

approximate the distribution of Yn by the limit distribution of Y .
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Central Limit Theorem: If X1, X2, . . . , Xn
iid∼ f(x) with mean µ

and variance σ2, then

Zn ≡
∑n

i=1Xi − nµ√
nσ

=

√
n(X̄n − µ)

σ

d−→ Nor(0, 1).

Thus, the cdf of Zn approaches Φ(z) as n increases.

The CLT is the most-important theorem in the universe.

The CLT usually works well if the pmf/pdf is fairly symmetric and
n ≥ 15.

We will eventually look at more-general versions of the CLT
described above.
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Example: If X1, X2, . . . , X100
iid∼ Exp(1) (so µ = σ2 = 1), then

P

(
90 ≤

100∑
i=1

Xi ≤ 110

)
= P

(
90− 100√

100
≤ Z100 ≤

110− 100√
100

)
≈ P (−1 ≤ Nor(0, 1) ≤ 1) = 0.6827.

By the way, since
∑100

i=1Xi ∼ Erlangk=100(λ = 1), we can use the
cdf (which may be tedious) or software such as Minitab to obtain the
exact value of P (90 ≤

∑100
i=1Xi ≤ 110) = 0.6835.

Wow! The CLT and exact answers match nicely! 2
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Exercise: Demonstrate that the CLT actually works.

1 Pick your favorite RV X1. Simulate it and make a histogram.

2 Now suppose X1 and X2 are iid from your favorite distribution.
Make a histogram of X1 +X2.

3 Now X1 +X2 +X3.

4 . . . Now X1 +X2 + · · ·+Xn for some reasonably large n.

5 Does the CLT work for the Cauchy distribution, i.e.,
X = tan(2πU), where U ∼ Unif(0, 1)?
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Intro to Estimation

Definition: A statistic is a function of the observations X1, . . . , Xn,
and not explicitly dependent on any unknown parameters.

Examples of statistics: X̄ = 1
n

∑n
i=1Xi, S2 = 1

n−1

∑n
i=1(Xi − X̄)2.

Statistics are random variables. If we take two different samples,
we’d expect to get two different values of a statistic.

A statistic is usually used to estimate some unknown parameter from
the underlying probability distribution of the Xi’s.

Examples of parameters: µ, σ2.
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Let X1, . . . , Xn be iid RV’s and let T (X) ≡ T (X1, . . . , Xn) be a
statistic based on the Xi’s. Suppose we use T (X) to estimate some
unknown parameter θ. Then T (X) is called a point estimator for θ.

Examples: X̄ is usually a point estimator for the mean µ = E[Xi],
and S2 is often a point estimator for the variance σ2 = Var(Xi).

It would be nice if T (X) had certain properties:

* Its expected value should equal the parameter it’s trying to estimate.

* It should have low variance.
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Unbiased Estimators
Definition: T (X) is unbiased for θ if E[T (X)] = θ.

Example/Theorem: Suppose X1, . . . , Xn are iid anything with
mean µ. Then

E[X̄] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] = E[Xi] = µ.

So X̄ is always unbiased for µ. That’s why X̄ is called the sample
mean.

Baby Example: In particular, suppose X1, . . . , Xn are iid Exp(λ).
Then X̄ is unbiased for µ = E[Xi] = 1/λ.

But be careful. . . . 1/X̄ is biased for λ in this exponential case, i.e.,
E[1/X̄] 6= 1/E[X̄] = λ.
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Example/Theorem: Suppose X1, . . . , Xn are iid anything with
mean µ and variance σ2. Then

E[S2] = E

[∑n
i=1(Xi − X̄)2

n− 1

]
= Var(Xi) = σ2.

Thus, S2 is always unbiased for σ2. This is why S2 is called the
sample variance.

Baby Example: Suppose X1, . . . , Xn are iid Exp(λ). Then S2 is
unbiased for Var(Xi) = 1/λ2.
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Proof (of general result): First, some algebra gives

S2 =

∑n
i=1(Xi − X̄)2

n− 1
=

∑n
i=1X

2
i − nX̄2

n− 1
.

Since E[X1] = E[X̄] and Var(X̄) = Var(X1)/n = σ2/n, we have

E[S2] =

∑n
i=1 E[X2

i ]− nE[X̄2]

n− 1
=

n

n− 1

(
E[X2

1 ]− E[X̄2]

)

=
n

n− 1

(
Var(X1) + (E[X1])2 −Var(X̄)− (E[X̄])2

)
=

n

n− 1
(σ2 − σ2/n) = σ2. 2

Remark: S is biased for the standard deviation σ.
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Big Example: Suppose that X1, . . . , Xn
iid∼ Unif(0, θ), i.e., the pdf

is f(x) = 1/θ, 0 < x < θ.

Consider two estimators: Y1 ≡ 2X̄ and Y2 ≡ n+1
n max1≤i≤nXi

Since E[Y1] = 2E[X̄] = 2E[Xi] = θ, we see that Y1 is unbiased for θ.

It’s also the case that Y2 is unbiased, but it takes a little more work to
show this. As a first step, let’s get the cdf of M ≡ maxiXi,

P (M ≤ y) = P (X1 ≤ y and X2 ≤ y and · · · and Xn ≤ y)

=

n∏
i=1

P (Xi ≤ y) = [P (X1 ≤ y)]n (Xi’s are iid)

=

[∫ y

0
fX1(x) dx

]n
=

[∫ y

0
1/θ dx

]n
= (y/θ)n.
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This implies that the pdf of M is

fM (y) ≡ d

dy
(y/θ)n =

nyn−1

θn
,

and this implies that

E[M ] =

∫ θ

0
yfM (y) dy =

∫ θ

0

nyn

θn
=

nθ

n+ 1
.

Whew! So we see that Y2 = n+1
n max1≤i≤nXi is unbiased for θ.

So both Y1 and Y2 are unbiased for θ, but which is better?

Let’s now compare variances. After similar algebra, we have

Var(Y1) =
θ2

3n
and Var(Y2) =

θ2

n(n+ 2)
.

Thus,Y2 has much lower variance than Y1. 2
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Mean Squared Error

Definition: The bias of T (X) as an estimator of θ is
Bias(T ) ≡ E[T ]− θ.

The mean squared error of T (X) is MSE(T ) ≡ E[(T − θ)2].

Remark: After some algebra, we get an easier expression for MSE
that combines the bias and variance of an estimator

MSE(T ) = Var(T ) + (E[T ]− θ︸ ︷︷ ︸
Bias

)2.

Lower MSE is better — even if there’s a little bias.
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Definition: The relative efficiency of T2 to T1 is
MSE(T1)/MSE(T2). If this quantity is < 1, then we’d want T1.

Example: X1, . . . , Xn
iid∼ Unif(0, θ).

Two estimators: Y1 = 2X̄ and Y2 = n+1
n maxiXi.

Showed before E[Y1] = E[Y2] = θ (so both are unbiased).

Also, Var(Y1) = θ2

3n and Var(Y2) = θ2

n(n+2) .

Thus, MSE(Y1) = θ2

3n and MSE(Y2) = θ2

n(n+2) , so Y2 is better.
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Maximum Likelihood Estimators

Definition: Consider an iid random sample X1, . . . , Xn, where each
Xi has pdf/pmf f(x). Further, suppose that θ is some unknown
parameter from Xi. The likelihood function is L(θ) ≡

∏n
i=1 f(xi).

Definition: The maximum likelihood estimator (MLE) of θ is the
value of θ that maximizes L(θ). The MLE is a function of the Xi’s
and is a RV.

Example: Suppose X1, . . . , Xn
iid∼ Exp(λ). Find the MLE for λ.

L(λ) =

n∏
i=1

f(xi) =

n∏
i=1

λe−λxi = λn exp
(
− λ

n∑
i=1

xi

)
.

Now maximize L(λ) with respect to λ.
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Could take the derivative and plow through all of the horrible algebra.
Too tedious. Need a trick. . . .

Useful Trick: Since the natural log function is one-to-one, it’s easy to
see that the λ that maximizes L(λ) also maximizes `n(L(λ))!

`n(L(λ)) = `n

(
λn exp

(
− λ

n∑
i=1

xi

))
= n`n(λ)− λ

n∑
i=1

xi

This makes our job less horrible.

d

dλ
`n(L(λ)) =

d

dλ

(
n`n(λ)− λ

n∑
i=1

xi

)
=

n

λ
−

n∑
i=1

xi ≡ 0.

This implies that the MLE is λ̂ = 1/X̄ . 2
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Remarks: (1) λ̂ = 1/X̄ makes sense since E[X] = 1/λ.

(2) At the end, we put a little ĥat over λ to indicate that this is the
MLE.

(3) At the end, we make all of the little xi’s into big Xi’s to indicate
that this is a RV.

(4) Just to be careful, you probably ought to perform a
second-derivative test, but I won’t blame you if you don’t.
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Invariance Property of MLE’s

Theorem (Invariance Property): If θ̂ is the MLE of some parameter
θ and h(·) is a one-to-one function, then h(θ̂) is the MLE of h(θ).

Example: Suppose X1, . . . , Xn
iid∼ Exp(λ). We define the survival

function as

F̄ (x) = P (X > x) = 1− F (x) = e−λx.

In addition, we saw that the MLE for λ is λ̂ = 1/X̄ .

Then the invariance property says that the MLE of F̄ (x) is

̂̄F (x) = e−λ̂x = e−x/X̄ .

This kind of thing is used all of the time the actuarial sciences. 2
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Distributional Results and Confidence Intervals

There are a number of distributions (including the normal) that come
up in statistical sampling problems. Here are a few:

Definitions: If Z1, Z2, . . . , Zk are iid Nor(0,1), then Y =
∑k

i=1 Z
2
i

has the χ2 distribution with k degrees of freedom (df). Notation:
Y ∼ χ2(k). Note that E[Y ] = k and Var(Y ) = 2k.

If Z ∼ Nor(0, 1), Y ∼ χ2(k), and Z and Y are independent, then
T = Z/

√
Y/k has the Student t distribution with k df. Notation:

T ∼ t(k). Note that the t(1) is the Cauchy distribution.

If Y1 ∼ χ2(m), Y2 ∼ χ2(n), and Y1 and Y2 are independent, then
F = (Y1/m)/(Y2/n) has the F distribution with m and n df.
Notation: F ∼ F (m,n).
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How (and why) would one use the above facts? Because they can be
used to construct confidence intervals (CIs) for µ and σ2 under a
variety of assumptions.

A 100(1− α)% two-sided CI for an unknown parameter θ is a
random interval [L,U ] such that P (L ≤ θ ≤ U) = 1− α.

Here are some examples / theorems, all of which assume that the Xi’s
are iid normal. . .

Example: If σ2 is known, then a 100(1− α)% CI for µ is

X̄n − zα/2

√
σ2

n
≤ µ ≤ X̄n + zα/2

√
σ2

n
,

where zγ is the 1− γ quantile of the standard normal distribution, i.e.,
zγ ≡ Φ−1(1− γ).
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Example: If σ2 is unknown, then a 100(1− α)% CI for µ is

X̄n − tα/2,n−1

√
S2

n
≤ µ ≤ X̄n + tα/2,n−1

√
S2

n
,

where tγ,ν is the 1− γ quantile of the t(ν) distribution.

Example: A 100(1− α)% CI for σ2 is

(n− 1)S2

χ2
α
2
,n−1

≤ σ2 ≤ (n− 1)S2

χ2
1−α

2
,n−1

,

where χ2
γ,ν is the 1− γ quantile of the χ2(ν) distribution.
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Exercise: Here are 20 residual flame times (in sec.) of treated
specimens of children’s nightwear. (Don’t worry — children were not
in the nightwear when the clothing was set on fire.)

9.85 9.93 9.75 9.77 9.67

9.87 9.67 9.94 9.85 9.75

9.83 9.92 9.74 9.99 9.88

9.95 9.95 9.93 9.92 9.89

Let’s get a 95% CI for the mean residual flame time.
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After a little algebra, we get

X̄ = 9.8525 and S = 0.0965.

Further, you can use the Excel function t.inv(0.975,19) to get
tα/2,n−1 = t0.025,19 = 2.093.

Then the half-length of the CI is

H = tα/2,n−1

√
S2/n =

(2.093)(0.0965)√
20

= 0.0451.

Thus, the CI is µ ∈ X̄ ±H , or 9.8074 ≤ µ ≤ 9.8976. 2
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