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Introduction

Input processes driving a simulation are random variables (e.g.,
interarrival times, service times, and breakdown times).

Must regard the output from the simulation as random.

Runs of the simulation only yield estimates of measures of system
performance (e.g., the mean customer waiting time).

These estimators are themselves random variables, and are therefore
subject to sampling error.

Sampling error must be taken into account to make valid inferences
concerning system performance.
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Introduction

Lots of measures you could be interested in:

Means — what is the mean customer waiting time?

Means aren’t enough. If I have one foot in boiling water and one
foot in freezing water, on average, I’m fine. So. . . .

Variances — how much is the waiting time liable to vary?

Quantiles — what’s the 99% quantile of the line length in a
certain queue?

Success probabilities — will my job be completed on time?

Would like point estimators and confidence intervals for the above.
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Introduction

Problem: Simulations almost never produce raw output that is
independent and identically distributed (i.i.d.) normal data.

Example: Customer waiting times from a queueing system. . .

(1) Are not independent — typically, they are serially correlated. If
one customer at the post office waits in line a long time, then the next
customer is also likely to wait a long time.

(2) Are not identically distributed. Customers showing up early in the
morning might have a much shorter wait than those who show up just
before closing time.

(3) Are not normally distributed — they are usually skewed to the
right (and are certainly never less than zero).
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Introduction

Archetypal Example on Serial Correlation: Suppose that
Y1, Y2, . . . , Yn are identically distributed but not independent. Is the
sample mean Ȳn ≡ 1

n

∑n
i=1 Yi a good estimator for µ = E[Yi]?

E[Ȳn] = 1
n

∑n
i=1 E[Yi] = µ, so it’s still unbiased. ,

On the other hand, recall the covariance function,
Rk ≡ Cov(Y1, Y1+k), k = 0, 1, 2, . . .. Can show (next lesson) that

Var(Ȳn) =
1

n

[
R0 + 2

n−1∑
k=1

(
1− k

n

)
Rk

]
.

This is a problem, since the “classical” confidence interval for the
mean µ requires i.i.d. observations and Var(Ȳn) = Var(Yi)/n. Those
extra covariances are trouble! /
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Introduction

The main point is that it’s difficult to apply “classical” statistical
techniques to the analysis of simulation output — in large part due to
the presence of serial correlation.

This Module’s Raison d’Être: Give methods to perform statistical
analysis of output from discrete-event computer simulations.

Why all the fuss?

Beware — improper statistical analysis can invalidate all results

Tremendous applications if you can get it right

Lots of cool research problems out there
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Introduction

Types of Simulations

To facilitate the presentation, we identify two types of simulations
with respect to output analysis: Finite-Horizon (Terminating) and
Steady-State simulations.

Finite-Horizon Simulations: The termination of a finite-horizon
simulation takes place at a specific time or is caused by the
occurrence of a specific event. Examples:

Mass transit system during rush hour.

Distribution system over one month.

Production system until a set of machines breaks down.

Start-up phase of any system — stationary or nonstationary.
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Introduction

Steady-State Simulations: The purpose of a steady-state simulation is
the study of the long-run behavior of a system. A performance
measure is called a steady-state parameter if it is a characteristic of
the equilibrium distribution of an output stochastic process.
Examples:

Continuously operating communication system where the
objective is the computation of the mean delay of a packet in the
long run.

Distribution system over a long period of time.

Many Markov chains.

(Some people don’t regard s-s simulation as interesting as
finite-horizon — because in steady-state, you’re always dead.)
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Introduction

What’s coming up? In §2, we’ll go over some math results that we’ll
refer to occasionally.

§3 discusses techniques to analyze output from terminating
simulations are based on the method of independent replications.

Additional problems arise for steady-state simulations. . .

§4 is concerned with the problem of starting the simulation — how
should it be initialized at time zero, and how long must it be run
before data representative of steady state can be collected?

§5 deals with point and confidence interval estimation for steady-state
simulation performance parameters.
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A Mathematical Interlude
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A Mathematical Interlude

We’ll look at a few examples illustrating the fact that things turn out a
little differently when you don’t have i.i.d. observations.

Working Assumptions: For the remainder of this section, suppose that
Y1, Y2, . . . , Yn are identically distributed with mean µ, but not
independent.

Such an assumption often applies in the context of steady-state
simulation.

Let’s get properties of the sample mean and variance — these guys
perform very well in the i.i.d. case — but you have to be careful when
using them in simulation output analysis.
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A Mathematical Interlude

Properties of the Sample Mean: First, E[Ȳn] = 1
n

∑n
i=1 E[Yi] = µ, so

the sample mean is still unbiased for µ.

Now recall the covariance function, Rk ≡ Cov(Y1, Y1+k), ∀k. Then

Var(Ȳn) = Cov(Ȳn, Ȳn)

=
1

n2

n∑
i=1

n∑
j=1

Cov(Yi, Yj)

=
1

n2

n∑
i=1

n∑
j=1

R|i−j| (1)

=
1

n

[
R0 + 2

n−1∑
k=1

(
1− k

n

)
Rk

]
. (2)
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A Mathematical Interlude

How did we go from (1) to (2)?

Just add up the terms in the following matrix of covariances.

R0 R1 R2 · · · Rn−3 Rn−2 Rn−1

R1 R0 R1 · · · Rn−4 Rn−3 Rn−2

R2 R1 R0 · · · Rn−5 Rn−4 Rn−3
...

...
...

Rn−3 Rn−4 Rn−5 · · · R0 R1 R2

Rn−2 Rn−3 Rn−4 · · · R1 R0 R1

Rn−1 Rn−2 Rn−3 · · · R2 R1 R0


The result follows because there are n R0 terms, 2(n− 1) R1 terms,
2(n− 2) R2 terms, . . . , and 2(n− (n− 1)) Rn−1 terms.
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A Mathematical Interlude

Equation (2) is important — it relates the variance of the sample mean
to the covariances of the process. With this in mind, define

σ2n ≡ nVar(Ȳn) = R0 + 2

n−1∑
k=1

(
1− k

n

)
Rk.

We also define the related variance parameter,

σ2 ≡ lim
n→∞

σ2n =? R0 + 2
∞∑
k=1

Rk =

∞∑
k=−∞

Rk,

where =? holds if the Rk’s decrease to 0 quickly as k →∞.

The variance parameter σ2 is so pretty and turns up all over the place.
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A Mathematical Interlude

Notice that if the Yi’s are i.i.d., then for all k 6= 0, we have Rk = 0, in
which case we have the familiar result σ2 = σ2n = R0 = Var(Y1).

But in the dependent case, σ2 =
∑∞

k=−∞Rk adds in the effects of the
covariances. In queueing applications, the covariances are positive
and σ2 .

= σ2n � Var(Y1), which may be bigger than you’d think.

The ratio σ2n/Var(Y1) is sort of the number of Yi’s needed to obtain
the information equivalent to one “independent” observation.

Warning: σ2n � Var(Y1) causes the classical confidence interval (CI)
for the mean µ to misbehave. Stay tuned.
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A Mathematical Interlude

Example: The first-order autoregressive process is defined by

Yi = φYi−1 + εi, for i = 1, 2, . . .,

where −1 < φ < 1, Y0 ∼ Nor(0, 1), and the εi’s are i.i.d.
Nor(0, 1− φ2) RV’s that are independent of Y0.

Recall that the Yi’s are all Nor(0,1) and Rk = φ|k|, ∀k.

After a little algebra, one can show that

σ2 =
∞∑

k=−∞
φ|k| =

1 + φ

1− φ
.

So, e.g., for φ = 0.9, we have σ2 = 19. 2
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A Mathematical Interlude

Properties of the Sample Variance:

S2
Y ≡

1

n− 1

n∑
i=1

(Yi − Ȳn)2.

If Y1, Y2, . . . , Yn are i.i.d., then S2
Y is unbiased for R0 = Var(Y1).

Moreover, S2
Y is also unbiased for σ2n = nVar(Ȳn) = R0 and

σ2 = limn→∞ σ
2
n = R0. ,

But if the Yi’s are dependent, then S2
Y may not be such a great

estimator for Var(Y1), σ2n, or σ2. /

So let’s again suppose that Y1, Y2, . . . , Yn are identically distributed
with mean µ and covariance function Rk, and see what happens. . . .
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A Mathematical Interlude

Get the expected value of S2
Y . The first steps should be familiar.

E[S2
Y ] =

1

n− 1
E

[ n∑
i=1

(Yi − Ȳn)2
]

=
1

n− 1
E

[ n∑
i=1

Y 2
i − nȲ 2

n

]
=

n

n− 1

(
E[Y 2

1 ]− E[Ȳ 2
n ]

)
=

n

n− 1

[{
Var(Y1) + (E[Y1])

2
}
−
{

Var(Ȳn) + (E[Ȳn])2
}]

=
n

n− 1

[
Var(Y1)−Var(Ȳn)

] (
since µ = E[Y1] = E[Ȳn]

)
.
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A Mathematical Interlude

Now let’s assume that the Rk’s > 0. Equation (2) implies

E[S2
Y ] =

n

n− 1

{
R0 −

1

n

[
R0 + 2

n−1∑
k=1

(
1− k

n

)
Rk

]}

= R0 −
2

n− 1

n−1∑
k=1

(
1− k

n

)
Rk

< R0

� R0 + 2

n−1∑
k=1

(
1− k

n

)
Rk.

Collecting these results shows that

E[S2
Y ] < Var(Y1) � nVar(Ȳn). 2
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A Mathematical Interlude

Thus, one should not use S2
Y /n to estimate Var(Ȳn).

So what happens if you dare to use it?

Here’s the classical 100(1− α)% CI for the mean µ of i.i.d. normal
observations with unknown variance:

µ ∈ Ȳn ± tα/2,n−1
√
S2
Y /n,

where tα/2,n−1 is a t-distribution quantile.

Since E[S2
Y /n]� Var(Ȳn), the CI will have true coverage� 1− α!

Oops! This is why you have to be really careful with correlated data!
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Finite-Horizon Simulation

Goal: Simulate some system of interest over a finite time horizon and
analyze the output.

For now, assume we obtain discrete simulation output Y1, Y2, . . . , Ym,
where the number of observations m can be a constant or random.

Example: Obtain the waiting times Y1, Y2, . . . , Y100 of the first 100
customers to show up at a store.

Or m could denote the random number of customers observed during
a time period [0, T ], where T itself could be known or random.

For example, we might consider all customers from 10 a.m. to 2 p.m.
(T is specified, but m is random). Or all customers from 10 a.m. until
the cashier gets a call to pick up his kid at school (now T is random).
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Finite-Horizon Simulation

Alternatively, we might observe continuous simulation output
{Y (t)|0 ≤ t ≤ T} over an interval [0, T ], where T can again be
known or random.

Example: Y (t) could denote the number of customers in the queue
over the time period 8 a.m. to 5 p.m. (T is constant). Or from 8 a.m.
until the cashier has to pick his kid up (T is random).
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Finite-Horizon Simulation

Easiest Goal: Estimate the expected value of the sample mean of the
observations, θ ≡ E[Ȳm], where Ȳm ≡ 1

m

∑m
i=1 Yi.

Of course, the distribution of the Yi’s may change over the day. This
is no problem — θ is simply the expected value of the average of all
of these Yi’s.

In the continuous case, we’d be interested in estimating θ ≡ E[Ȳ (T )],
where Ȳ (T ) ≡ 1

T

∫ T
0 Y (t) dt.

Example: Estimate the average waiting time of the first 100
customers. Or estimate the time-averaged number of customers in line
between 8 a.m. and 5 p.m.
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Finite-Horizon Simulation

Consider the discrete case. Although Ȳm is an unbiased estimator for
θ (by definition), a proper statistical analysis requires that we also
provide an estimate of Var(Ȳm).

But since the Yi’s are not necessarily i.i.d., then Equation (2) and the
fact that the Yi’s may not be identically distributed show that we could
have Var(Ȳm) 6= Var(Y1)/m. /

And then the rest of the diatribe in the math interlude says that we’d
better not use S2

Y /m to estimate Var(Ȳm).

Whatever shall we do??
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Finite-Horizon Simulation

The way around the problem is via the method of independent
replications (IR).

IR estimates Var(Ȳm) by conducting r independent simulation runs
(replications) of the system under study, where each replication
consists of m observations.

It is easy to make the replications independent — just re-initialize
each replication with a different pseudo-random number seed.

28 / 71



Finite-Horizon Simulation

Notation and Stuff

Denote the sample mean from replication i by

Zi ≡
1

m

m∑
j=1

Yi,j ,

where Yi,j is observation j = 1, 2, . . . ,m from replication
i = 1, 2, . . . , r. E.g., Yi,j is customer j’s waiting time from rep i.

If each run is started under the same operating conditions (e.g., all
queues empty and idle), then the replication sample means
Z1, Z2, . . . , Zr are i.i.d. random variables.
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Finite-Horizon Simulation

Define the grand sample mean as Z̄r ≡ 1
r

∑r
i=1 Zi. The obvious point

estimator for Var(Ȳm) = Var(Zi) is the sample variance of the Zi’s,

S2
Z ≡

1

r − 1

r∑
i=1

(Zi − Z̄r)2.

Note that the forms of S2
Z and S2

Y /m resemble each other. But since
the replicate sample means are i.i.d., S2

Z is usually much less biased
for Var(Ȳm) = Var(Zi) than is S2

Y /m.

In light of the above, S2
Z/r is a reasonable estimator for Var(Z̄r).
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Finite-Horizon Simulation

If the number of observations per replication, m, is large enough, a
central limit theorem tells us that the replicate sample means
Z1, Z2, . . . , Zr are approximately i.i.d. Nor(θ,Var(Z1)), and

S2
Z ≈

Var(Z1)χ
2(r − 1)

r − 1
.

Then after the usual baby stats manipulations, we have the
approximate IR 100(1− α)% two-sided CI for θ,

θ ∈ Z̄r ± tα/2,r−1
√
S2
Z/r . (3)
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Finite-Horizon Simulation

Example: Suppose we want to estimate the expected average waiting
time for the first m = 5000 customers at the bank. We make r = 5
independent replications of the system, each initialized empty and
idle and consisting of 5000 waiting times. The resulting replicate
means are:

i 1 2 3 4 5

Zi 3.2 4.3 5.1 4.2 4.6

Then Z̄5 = 4.28 and S2
Z = 0.487. For level α = 0.05, we have

t0.025,4 = 2.78, and (3) gives the following 95% CI for the expected
average waiting time for the first 5000 customers:

θ ∈ 4.28± (2.78)
√

0.487/5 = [3.41, 5.15]. 2
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Finite-Horizon Simulation

What if we’d like a smaller CI? We’ll need to run more replications.

Let H ≡ tα/2,r−1
√
S2
Z/r denote the half-length of the current CI,

and let ε ≡ tα/2,r?−1
√
S2
Z/r

? denote the desired half-length based on

the same variance estimator S2
Z but more replications r? > r.

r? =
t2α/2,r?−1S

2
Z

ε2
<

t2α/2,r−1S
2
Z

ε2
=
(
H/ε

)2
r.

So take r? ← (H/ε)2r, run r? − r more reps, and re-calculate the CI
using all r? reps. You’ll probably get a CI with half-length close to ε.

If we want to reduce the length of the CI by a factor of 10, we’ll need
to increase the reps by a factor of 100.
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Finite-Horizon Simulation

What if we’d like a CI for other performance measures?

How about quantiles?

Definition: The p-quantile of a RV W with c.d.f. F (w) is
ξp ≡ min

{
w|F (w) ≥ p

}
. If W is continuous, then F (ξp) = p and

ξp = F−1(p).

Example: Suppose that W ∼ Exp(λ). Then (we’ve seen this a
million times), F (w) = 1− e−λw , so that ξp = − 1

λ`n(1− p). 2

We can use the method of independent replications to obtain
confidence intervals for quantiles.
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Finite-Horizon Simulation

Example: Let Wi denote the maximum waiting time that some
customer experiences at the airport ticket counter between 8 a.m. and
5 p.m. during replication i of a simulation, i = 1, 2, . . . , r.

Let’s order the i.i.d. Wi’s: W(1) ≤W(2) ≤ · · · ≤W(r).

Then the typical point estimator for the quantile ξp is

ξ̂p ≡ W(brp+0.5c),

where b·c is the floor (round-down) function.

Now that we have a point estimator for ξp, we’ll get a CI for ξp. . . .
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Finite-Horizon Simulation

A slightly conservative approximate nonparametric CI for ξp will turn
out to be of the form ξp ∈ [W(j),W(k)] (Hahn and Meeker 1991).

To this end, first note that P (Wi ≤ ξp) = p. So if we define A as the
number of Wi’s that are ≤ ξp, then A ∼ Bin(r, p).

Second, the event that {j ≤ A ≤ k − 1} means that between j and
k − 1 of the Wi’s are ≤ ξp. This is equivalent to the event{(

ξp ≥W(j)

)
and

(
ξp < W(k)

)}
.

36 / 71



Finite-Horizon Simulation

Putting this all together, we have. . . .

P
(
W(j) ≤ ξp < W(k))

= P (j ≤ A ≤ k − 1)

=

k−1∑
`=j

(
r

`

)
p`(1− p)r−`

.
= Φ

(
k − 0.5− rp√
rp(1− p)

)
− Φ

(
j − 0.5− rp√
rp(1− p)

)
,

where Φ(·) is the Nor(0,1) c.d.f., the “0.5” terms are “continuity
corrections”, and the approximation requires rp and r(1− p) ≥ 5.
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Finite-Horizon Simulation

In order to get an approximate 100(1− α)% CI of the form
ξp ∈ [W(j),W(k)], we need to find j and k such that

Φ

(
k − 0.5− rp√
rp(1− p)

)
− Φ

(
j − 0.5− rp√
rp(1− p)

)
≥ 1− α.

(The CI is a little conservative because of the binomial discretization.)

Suggested values for j and k arise by setting

j − 0.5− rp√
rp(1− p)

= −zα/2 and
k − 0.5− rp√
rp(1− p)

= zα/2 ⇒

j =
⌊
rp+ 0.5− zα/2

√
rp(1− p)

⌋
k =

⌈
rp+ 0.5 + zα/2

√
rp(1− p)

⌉
.
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Finite-Horizon Simulation

Sometimes — especially for “extreme” quantiles — you need a lot of
replications to get reasonably small half-lengths.

Example: Let’s suppose that we want a 95% CI for ξ0.9 and we’ve
made r = 1000 reps.

Point estimator for ξ0.9 is ξ̂0.9 = W(b1000(0.9)+0.5c) = W(900).

With the CI in mind,

j =
⌊
900.5−1.96

√
90
⌋

= 881, k =
⌈
900.5+1.96

√
90
⌉

= 920,

so that the CI 95% is [W(881),W(920)]. 2
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Initialization Problems

Before a simulation can be run, one must provide initial values for all
of the simulation’s state variables.

Since the experimenter may not know what initial values are
appropriate for the state variables, these values might be chosen
somewhat arbitrarily.

For instance, we might decide that it is “most convenient” to initialize
a queue as empty and idle.

Such a choice of initial conditions can have a significant but
unrecognized impact on the simulation run’s outcome.

Thus, the initialization bias problem can lead to errors, particularly in
steady-state output analysis.
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Initialization Problems

Examples of problems concerning simulation initialization.

Visual detection of initialization effects is sometimes difficult —
especially in the case of stochastic processes having high
intrinsic variance such as queueing systems.

How should the simulation be initialized? Suppose that a
machine shop closes at a certain time each day, even if there are
jobs waiting to be served. You have to be careful to start each
day with a demand that depends on the number of jobs
remaining from the previous day.

Initialization bias can lead to point estimators for steady-state
parameters having high mean squared error, as well as CI’s
having poor coverage.
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Initialization Problems

Since initialization bias raises important concerns, how do we detect
and deal with it? We first list methods to detect it.

Attempt to detect the bias visually by scanning a realization of the
simulated process. This might not be easy, since visual analysis can
miss bias. Further, a visual scan can be tedious. To make the visual
analysis more efficient, one might transform the data (e.g., take logs
or square roots), smooth it, average it across several independent
replications, or construct CUSUM plots.

Conduct statistical tests for initialization bias. Various procedures
check to see if the mean or variance of a process changes over time:
ASAP3, SPSTS, Sequest, and Sequem (Wilson et al.), change point
detection from the statistical literature, etc.
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Initialization Problems

If initialization bias is detected, one may want to do something about
it. Two simple methods for dealing with bias. . .

(a) Truncate the output by allowing the simulation to “warm up”
before data are retained for analysis.

Experimenter hopes that the remaining data are representative of the
steady-state system.

Output truncation is probably the most popular method for dealing
with initialization bias; and all of the major simulation languages have
built-in truncation functions.
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Initialization Problems

But how can one find a good truncation point? If the output is
truncated “too early,” significant bias might still exist in the remaining
data. If truncated “too late,” then good observations might be wasted.

Unfortunately, all simple rules to determine truncation points do not
perform well in general.

A reasonable practice is to average observations across several
replications, and then visually choose a truncation point based on the
averaged run; see Welch (1983) for a nice visual/graphical approach.

This is where the new, sophisticated sequential change-point detection
algorithms come into play.
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Initialization Problems
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Initialization Problems
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Initialization Problems
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Initialization Problems
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Initialization Problems

(b) Make a very long run to overwhelm the initialization effects.

This method of bias control is conceptually simple to carry out and
may yield point estimators having lower mean squared errors than the
analogous estimators from truncated data (see, e.g., Fishman 1978).

However, a problem with this approach is that it can be wasteful with
observations; for some systems, an excessive run length might be
required before the initialization effects are rendered negligible.

Bottom Line: Once initialization effects are dealt with, you can do
steady-state analysis. . . .
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Steady-State Analysis

Now assume that we have on hand stationary (steady-state) simulation
output, Y1, Y2, . . . , Yn.

Goal: Estimate some parameter of interest, e.g., the mean customer
waiting time or the expected profit produced by a certain factory
configuration.

In particular, suppose the mean of this output is the unknown quantity
µ. We’ll use the sample mean Ȳn to estimate µ.

As in the case of terminating / finite-horizon simulations (where we
used the method of IR), we must accompany the value of any point
estimator with a measure of its variance.
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Steady-State Analysis

Instead of Var(Ȳn), we can estimate the variance parameter,

σ2 ≡ lim
n→∞

nVar(Ȳn)

= lim
n→∞

[
R0 + 2

n−1∑
k=1

(
1− k

n

)
Rk

]
by (2)

=

∞∑
k=−∞

Rk (if the Rk’s decrease quickly as k →∞).

Thus, σ2 is simply the sum of all covariances!

σ2 pops up all over the place: simulation output analysis, Brownian
motions, financial engineering applications, etc.
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Steady-State Analysis

Example: MA(1) process, Yi+1 = θεi + εi+1, where the εi’s are i.i.d.
Nor(0, 1). Then R0 = 1 + θ2, R±1 = θ, and Rk = 0, o’w.

By (2), nVar(Ȳn) = R0 + 2
∑n−1

k=1

(
1− k

n

)
Rk = (1 + θ)2 − 2θ

n , and
so σ2 = limn→∞ nVar(Ȳn) = (1 + θ)2. 2

Example: AR(1) process, Yi+1 = φYi + εi+1, where the εi’s are i.i.d.
Nor(0, 1− φ2), −1 < φ < 1, and Y0 ∼ Nor(0, 1).

For the AR(1), Rk = φ|k|, ∀k. Then after lots of algebra, it turns out
that σ2 = (1 + φ)/(1− φ); so σ2 explodes as φ→ 1. 2

Many methods for estimating σ2 and for conducting steady-state
output analysis in general: batch means, IR, standardized time series,
spectral analysis, regeneration, ARMA time series modeling, etc.

54 / 71



Steady-State Analysis

Batch Means

The method of batch means (BM) is often used to estimate σ2 and to
calculate confidence intervals for µ.

Idea: Divide one long simulation run into a number of contiguous
batches, and then appeal to a central limit theorem to assume that the
resulting batch sample means are approximately i.i.d. normal.

In particular, suppose that we partition Y1, Y2, . . . , Yn into b
nonoverlapping, contiguous batches, each consisting of m
observations (assume that n = bm).

Y1, . . . , Ym︸ ︷︷ ︸
batch 1

, Ym+1, . . . , Y2m︸ ︷︷ ︸
batch 2

, . . . , Y(b−1)m+1, . . . , Ybm︸ ︷︷ ︸
batch b
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Steady-State Analysis

Batch Means

The ith batch mean is the sample mean of the m observations from
batch i = 1, 2, . . . , b,

Ȳi,m ≡
1

m

m∑
j=1

Y(i−1)m+j .

The batch means are correlated for small m, but for large m,

Ȳ1,m, . . . , Ȳb,m ≈ i.i.d. Nor(µ,Var(Ȳi,m)) ≈ Nor(µ, σ2/m).
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Steady-State Analysis

Batch Means

Similar to IR (actually, more similar than I’m indicating, because I’m
using different notation), we define the batch means estimator for
σ2 = limn→∞ nVar(Ȳn) = limm→∞mVar(Ȳ1,m) as

V̂B ≡
m

b− 1

b∑
i=1

(Ȳi,m − Ȳn)2 ≈ σ2χ2(b− 1)

b− 1
.

How good is V̂B as an estimator of σ2? Let’s look at its mean and
variance.

First of all, we have E[V̂B]
.
= σ2

b−1E[χ2(b− 1)] = σ2, so V̂B is
asymptotically unbiased for σ2 as the batch size m→∞.
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Steady-State Analysis

Batch Means

More-Precise Result: It can be shown that

E[V̂B] = σ2 +
γ(b+ 1)

mb
+ o(1/m),

where γ ≡ −2
∑∞

k=1 kRk and o(1/m) is a function that goes to 0
faster than rate 1/m as m gets big.

We also have

Var(V̂B)
.
=

σ4

(b− 1)2
Var(χ2(b− 1)) =

2σ4

b− 1
.
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Steady-State Analysis

Batch Means

These facts immediately imply that for large m and b,

MSE(V̂B) = Bias2 + Var
.
=

γ2

m2
+

2σ4

b
.

Now let’s find m to minimize MSE. To do so, take m = cnδ, where
c > 0 and 0 < δ < 1. Then

MSE(V̂B)
.
=

γ2

c2n2δ
+

2cσ4

n1−δ
.

It’s easy to see that the choice δ = 1/3 yields the fastest convergence
to 0 for MSE(V̂B).
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Steady-State Analysis

Batch Means

For δ = 1/3, we have

MSE(V̂B)
.
=

1

n2/3

[
γ2

c2
+ 2cσ4

]
.

Minimizing the above expression for MSE with respect to c, we get
the “optimal” batch size m? ≡ (γ2n/σ4)1/3, and then the resulting
“optimal” MSE,

MSE?(V̂B) ≡ 3(γσ4/n)2/3.

Of course, σ2 and γ are unknown in practice and must be estimated
(somehow) — this is not for today.
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Steady-State Analysis

Batch Means

Now the batch means confidence interval for µ.

Since the batch means Ȳ1,m, . . . , Ȳb,m ≈ i.i.d. Nor(µ, σ2/m) for large
m, we get the following approximate 100(1− α)% CI for µ:

µ ∈ Ȳn ± tα/2,b−1
√
V̂B/n.

This equation is similar to (3) (though I’m using different notation).
The difference is that BM divides one long run into a number of
batches, whereas IR uses a number of independent shorter runs.

Consider the old IR numerical example but now pretend that the Zi’s
are batch means (instead of replicate means); then the same numbers
carry through the example if you note that S2

Z/r = V̂B/n .
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Steady-State Analysis

Batch Means

Some Properties of the Batch Means CI

Define the half-length as H ≡ tα/2,b−1
√
V̂B/n. Then as m→∞, it

can be shown that

√
mbH ≈ σ tα/2,b−1

χ(b− 1)√
b− 1

(the chi distribution)

√
mbE[H] → σ tα/2,b−1

√
2

b− 1

Γ( b2)

Γ( b−12 )

mbVar(H) → σ2 t2α/2,b−1

{
1− 2

b− 1

[
Γ( b2)

Γ( b−12 )

]2}
.
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Steady-State Analysis

Batch Means

Remarks: E[H] decreases in b, though it smooths out around b = 30.
A common recommendation is to take b .= 30 and concentrate on
increasing the batch size m as much as possible.

The technique of BM is intuitively appealing and easy to understand.

But problems can come up if the Yj’s are not stationary (e.g., if
significant initialization bias is present), if the batch means are not
normal, or if the batch means are not independent.

63 / 71



Steady-State Analysis

Batch Means

If any of these assumption violations exist, poor confidence interval
coverage may result — unbeknownst to the analyst.

To ameliorate the initialization bias problem, the user can truncate
some of the data or make a long run as discussed in §4.

In addition, the lack of independence or normality of the batch means
can be countered by increasing the batch size m.
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Steady-State Analysis

Independent Replications

Independent Replications

Of the difficulties encountered when using BM, the possibility of
correlation among the batch means might be the most troublesome.

This problem is explicitly avoided by the method of IR, described in
the context of terminating simulations in §3. In fact, the replicate
means are independent by their construction.

Unfortunately, since each of the r reps has to be started properly,
initialization bias presents more trouble when using IR for
steady-state analysis than when using BM.

Recommendation: Because of initialization bias in each of the
replications, use batch means over independent reps. (Alexopoulos
and Goldsman 2004, “To Batch or not to Batch?”)
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Steady-State Analysis

Overlapping Batch Means

Overlapping Batch Means

Suppose that we use the following overlapping batches

Y1 Y2 Y3 Y4 · · · Ym

Y2 Y3 Y4 Y5 · · · Ym Ym+1

Y3 Y4 Y5 Y6 · · · Ym Ym+1 Ym+2

...
...

...
...

...
...

...

with overlapping batch means

Ȳ o
i,m =

1

m

i+m−1∑
j=i

Yj , i = 1, 2, . . . , n−m+ 1.

Turns out: Even though the Ȳ o
i,m’s are highly correlated, no problema!
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Steady-State Analysis

Overlapping Batch Means

The overlapping batch means (OBM) estimator for µ is Ȳn (no
surprise), and the OBM estimator for σ2 = limn→∞ nVar(Ȳn) is

V̂O =
m

n−m+ 1

n−m+1∑
i=1

(Ȳ o
i,m − Ȳn)2.

Facts: As n and m get large,

E[V̂O]

E[V̂B]
→ 1 and

Var(V̂O)

Var(V̂B)
→ 2

3
.

So OBM has the same bias as, but lower variance than regular BM —
great! (Meketon and Schmeiser 1984, “Overlapping Batch Means:
Something for Nothing?”)
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Steady-State Analysis

Overlapping Batch Means

Note that no attempt was made to make the overlapping batch means
independent.

This is related to the fact that V̂O is almost identical to what is known
as Bartlett’s spectral estimator for σ2.

Fact: For large m and b = n/m, it can be shown that
V̂O ≈ σ2χ2(d)/d, where d = 3

2(b− 1). So you get 50% more d.f.
than regular batch means.

Resulting CI: µ ∈ Ȳn ± tα/2,d
√
V̂O/n

Recommendation: For large m and n/m use OBM instead of BM!
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Steady-State Analysis

Other Methods

Several other methods for obtaining variance estimators for the
sample mean and CI’s for the steady-state process mean µ.

Spectral Estimation. This method estimates Var(Ȳn) (as well as the
analogous CI’s for µ) in a manner completely different from that of
batch means.

This approach operates in the so-called frequency domain, whereas
batch means uses the time domain.

Spectral estimation sometimes takes a little effort, but it works well
enough to suggest that the reader consult the relevant references, e.g.,
Lada and Wilson’s work on WASSP.
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Steady-State Analysis

Other Methods

Regeneration. Many simulations can be broken into i.i.d. blocks that
probabilistically “start over” at certain regeneration points.

Example: An M/M/1 queue’s waiting time process, where the i.i.d.
blocks are defined by groups of customers whose endpoints have zero
waiting times.

Regeneration uses the i.i.d. structure and, under certain conditions,
gives great estimators for Var(Ȳn) and CI’s for µ.

The method effectively eliminates any initialization problems.

On the other hand, it may be difficult to define natural regeneration
points, and extremely long simulation runs are often needed to obtain
a reasonable number of i.i.d. blocks.
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Steady-State Analysis

Other Methods

Standardized Time Series. One often uses the central limit theorem to
standardize i.i.d. random variables into an (asymptotically) normal
random variable.

Schruben and various colleagues generalize this idea in many ways by
using a process central limit theorem to standardize a stationary
simulation process into a Brownian bridge process.

Properties of Brownian bridges are then used to calculate a number of
good estimators for Var(Ȳn) and CI’s for µ.

This method is easy to apply and has some asymptotic advantages
over batch means.

Research Issue: Combine various strategies together to obtain
even-better variance estimators.
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