
Our first paradigm
l  Functional programming

l  It is one of the simplest paradigms
l  It is the foundation of all the other paradigms
l  It is a form of declarative programming

l  Our approach to functional programming
l  It is our first introduction to programming concepts
l  It is our first introduction to a kernel language
l  We use it to explain invariants and recursion
l  We give examples using integers, lists, and trees
l  We present higher-order programming: the apotheosis
l  We give a formal semantics based on the kernel language

Declarative programming:
the long-term view

l  Declarative programming is a vision for the future
l  Just say what result you want (give properties of the result)
l  Let the computer figure out how to get there
l  Declarative versus imperative: properties versus commands

l  How do we make this vision real
l  Programming gets more support from the computer
l  With same programming effort, we can do more

l  The whole history of computing is a progression
toward more declarative

l  And faster and cheaper (all three are connected)

Declarative programming:
the short-term view

l  Declarative programming is the use of mathematics
in programming (such as functions and relations)

l  A computation calculates a function or a relation
l  Use the power of mathematics to simplify programming

(such as confluency and referential transparency)

l  Very common in practice
l  Functional languages: LISP, Scheme, ML, Haskell, OCaml, ...
l  Logic languages (relational): SQL, constraint programming, Prolog, ...
l  Combinations: XSL (formatting), XSLT (transforming), …

l  Also called “programming without state”
l  Variables and data structures can’t be updated
l  Testing and verification is much simplified
l  Declarative versus imperative: stateless versus stateful

Key advantage of
functional programming
l  “A program that works today will work tomorrow”

l  Functions don’t change
l  All changes are in the arguments, not in the functions

l  It is a programming style that should
be encouraged in all languages
l  “Stateless server” for a client/server application
l  “Stateless component” for a service application

l  Learning functional programming helps us
think in this style
l  All programs written in the functional paradigm are ipso facto

declarative: an excellent way to learn to think declaratively

“Cookies” on
the Web

Now let’s start
programming...
l  This completes the « philosophical »

introduction of the course
l  Now we will start programming in

our first paradigm
l  Functional programming

l  At the same time, we will introduce
the Oz language and the Mozart system
l  Mozart’s emacs interface, which we will

use throughout the course

