
Streams
l  A stream is a list that ends in an unbound

variable
l  S=a|b|c|d|S2
l  A stream can be extended with new elements as

long as necessary
l  The stream can be closed by binding the end to nil

l  A stream can be used as a communication
channel between two threads
l  The first thread adds elements to the stream
l  The second thread reads the stream

Programming
with streams
l  This program displays the elements of a

stream as they appear:

proc {Disp S}
 case S of X|S2 then {Browse X} {Disp S2} end
end
declare S
thread {Disp S} end

l  We can add elements gradually:
 declare S2 in S=a|b|c|S2
 declare S3 in S2=d|e|f|S3

l  Try it yourself!

Producer/
consumer (1)

l  A producer generates a stream of data
 fun {Prod N} {Delay 1000} N|{Prod N+1} end

l  The {Delay 1000} slows down execution enough to observe it

l  A consumer reads the stream and performs
some action (like the Disp procedure)

l  A producer/consumer program:
 declare S
 thread S={Prod 1} end
 thread {Disp S} end

Producer/
consumer (2)

l  Each circle is a concurrent activity that reads and
writes streams
l  We call this an agent

l  Agents P and C communicate through stream S
l  The first thread creates the stream, the second reads it

 thread S={Prod 1} end thread {Disp S} end

S=1|2|3|4|…

Agent P Agent C

Pipeline (1)
l  We can add more agents between P and C
l  Here is a transformer that modifies the stream:

 fun {Trans S}
 case S of X|S2 then X*X|{Trans S2} end
 end

l  This program has three agents:
 declare S1 S2
 thread S1={Prod 1} end
 thread S2={Trans S1} end
 thread {Disp S2} end

Pipeline (2)

l  We now have three agents
l  The producer (agent P) creates stream S1
l  The transformer (agent T) reads S1 and creates S2
l  The consumer (agent C) reads S2

l  The pipeline is a very useful technique!
l  For example, it is omnipresent in operating systems since Unix

 thread S1={Prod 1} end thread {Disp S2} end

S1=1|2|3|…

Agent P Agent C

thread S2={Trans S1} end

Agent T

S2=1|4|9|…

Agents
l  An agent is a concurrent activity that reads and writes

streams
l  The simplest agent is a list function executing in one thread
l  Since list functions are tail-recursive, the agent can execute

with a fixed memory size
l  This is the deep reason why single assignment is important:

it makes tail-recursive list functions, which makes
deterministic dataflow into a practical paradigm

l  All list functions can be used as agents
l  All functional programming techniques can be used in

deterministic dataflow
l  Including higher-order programming! In the next lesson will see more

examples of the power of the model.

