
A for loop abstraction
that collects results
l  We show how to use state (a cell) and higher-

order programming together to build a powerful
new abstraction for deterministic dataflow
l  The imperative and functional paradigms are not

antagonistic! Using cells can give extra power to
dataflow programs.

l  Our new abstraction will generalize the
declarative for loop of Oz to collect results
l  It is a powerful form of list comprehension

Declarative
for loop
l  Oz has a declarative for loop

for I in [1 2 3] do {Browse I*I} end

l  This is exactly the same as executing the following three
statements one after the other:

local I=1 in {Browse I*I} end
local I=2 in {Browse I*I} end
local I=3 in {Browse I*I} end

l  Each iteration is independent; the identifier I references
one element of the list in each iteration

Collecting results
in the for loop

l  We would like to extend the declarative
for loop to accumulate results

R = for I in [1 2 3] do (accumulate I*I) end

l  We would like this to return R=[1 4 9]
l  The existing for loop cannot do this, but we

will define a new abstraction that can

The ForCollect
abstraction
l  The ForCollect abstraction extends the for loop

with the ability to accumulate results:

R = {ForCollect [1 2 3] proc {$ C I} <stmt> end}

l  The loop body is <stmt>
l  I is the loop index
l  C is the « collect procedure »: calling {C X} in the loop

body will accumulate X in R

R = {ForCollect [1 2 3] proc {$ C I} {C I*I} end}
⇒ R=[1 4 9]

Defining the
collect procedure (1)

l  How can we define the collect procedure C?
l  C cannot be written in the functional paradigm

because it has memory: each time we call {C X}
we need to append X to the output list. Each time
we call C the output changes.

l  C can only be defined using state, i.e., a cell
l  The cell is used to append X to the output list

l  But seen from the outside, ForCollect will still
be functional!
l  Let us see how to define the collect procedure...

Defining the
collect procedure (2)
l  Assume we are building the output list and we have

already added three elements to it:

R = 1|4|9|R1

l  To add another element, we need to bind R1:

R1=16|R2

l  This makes the new R = 1|4|9|16|R2
l  The new end of this list is R2!
l  So the cell always has to store the end of the list

Defining the
collect procedure (3)
l  We can define the collect procedure like this:

Acc={NewCell R} % Cell Acc contains end of the list

proc {C X}
 R2 % New end of list
in
 @Acc=X|R2 % Bind old end of list to X|R2
 Acc:=R2 % Set C to new end of list R2
end

l  This appends X to the output list

Definition
of ForCollect
l  This gives us the following definition of ForCollect:

proc {ForCollect Xs P Ys}
 Acc={NewCell Ys}
 proc {C X} R2 in @Acc=X|R2 Acc:=R2 end
in
 for X in Xs do {P C X} end
 @Acc=nil
end

l  We need to write ForCollect as a procedure,
even though we will call it as a function
l  It is because we need to access the output Ys (= initial content of Acc)

Doing Acc:=nil would be
wrong! Do you see why?

Concurrent agent
with ForCollect
l  We have defined ForCollect on lists, but it can do more!

l  ForCollect also works on streams

l  Running ForCollect in a thread makes a concurrent agent:

Ys=thread {ForCollect Xs
 proc {$ C X} if X mod 2 == 0 then {C X*X} end end}
 end

l  This agent reads an input stream Xs and returns an
output stream Ys that contains the squares of the even
elements of Xs

Conclusions
of ForCollect
l  ForCollect is a powerful abstraction that combines

and generalizes both Map and Filter
l  When used with lists, it is called a list comprehension
l  Some languages have syntax for this, e.g., Haskell and Python
l  In Oz, list comprehensions can be concurrent agents

l  ForCollect is defined by combining cells and higher-order
programming
l  There is no antagonism between the imperative and functional

paradigms; they can be used together to the benefit of both
l  Even though ForCollect uses a cell internally, it is completely

deterministic when viewed from the outside. This is because we
use the cell in a single thread.

Alternative definition
of ForCollect
l  If the collect procedure C might be used in more than one thread,

then we need to change its definition to use Exchange:

proc {ForCollect Xs P Ys}
 Acc={NewCell Ys}
 proc {C X} R2 in {Exchange Acc X|R2 R2} end
in
 for X in Xs do {P C X} end
 {Exchange Acc nil _}
end

l  {Exchange Acc Old New} does two operations atomically:
l  Old is bound to the old content and New becomes the new content
l  This avoids errors when cells are used by multiple threads: doing @Acc and

Acc:=R2 as two separate operations would permit another operation on Acc
to be done in between, which is wrong!

