
Digital logic
simulation
l  The deterministic dataflow paradigm makes

it easy to model digital logic circuits

l  We show how to model combinational logic
circuits (no memory) and sequential logic
circuits (with memory)

l  Signals in time are represented as streams;
logic gates are represented as agents

Modeling
digital circuits
l  Real digital circuits consist of active circuit elements

called gates which are interconnected using wires that
carry digital signals

l  A digital signal is a voltage in function of time
l  Digital signals are meant to carry two possible values, called

0 and 1, but they may have noise, glitches, ringing, and other
undesirable effects

l  A digital gate has input and output signals
l  The output signal is slightly delayed with respect to the input

l  We will model gates as agents and signals as streams
l  This assumes perfectly clean signals and zero gate delay
l  We will later add a delay gate in order to model gate delay

Digital signals
as streams

l  A signal is modeled by a stream that
contains elements with values 0 or 1

S=a0|a1|a2|...|ai|...

l  Time instants are numbered from when
the circuit starts running

l  At instant i, the signal’s value ai∈{0,1}

Digital logic gates

l  Some typical logic gates with their standard pictorial
symbols and the boolean functions that define them

l  But gates are not just boolean functions!

00
0

0
1

1
1

1
x

x
y

y

x
y

z

z

z

x Not

Or

And

Xorz

x Not And Or Xor
z

1

0

0 1 1
0 0 1 1

1 1 0

0 0 0

y

1

Digital gates
as agents
l  A gate is much more than a boolean function; it is an active entity

that takes input streams and calculates an output stream

fun {And A B} if A==1 andthen B==1 then 1 else 0 end end
fun {Loop S1 S2}
 case S1#S2 of (A|T1)#(B|T2) then {And A B}|{Loop T1 T2} end
end
thread Sc={Loop Sa Sb} end

l  Example execution:

Sx=0|1|0|Tx % input signal x
Sy=1|1|0|Ty % input signal y
Sz=0|1|0|Tz % output signal z

x

y
z

And gate

Creating
many gates
l  Let us define a proper abstraction for building all the

different kinds of logic gates we need
l  We define the function GateMaker that takes a two-argument

boolean function Fun, where {GateMaker Fun} returns a function
FunG that creates gates

l  Each call to FunG creates a running gate based on Fun

l  This gives three levels of abstraction that we can
compare with object-oriented programming:
l  GateMaker is analogous to a generic class
l  FunG is analogous to a class
l  A running gate is analogous to an object

GateMaker
implementation
l  Calling {GateMaker F} creates a gate maker:

fun {GateMaker F}
 fun {$ Xs Ys}
 fun {GateLoop Xs Ys}
 case Xs#Ys of (X|Xr)#(Y|Yr) then
 {F X Y}|{GateLoop Xr Yr}
 end
 end
 in
 thread {GateLoop Xs Ys} end
 end
end

Making gates
l  Each of these functions can make gates:

AndG={GateMaker fun {$ X Y} X*Y end}
OrG={GateMaker fun {$ X Y} X+Y-X*Y end}
NandG={GateMaker fun {$ X Y} 1-X*Y end}
NorG={GateMaker fun {$ X Y} 1-X-Y+X*Y end}
XorG={GateMaker fun {$ X Y} X+Y-2*X*Y end}

