Digital logic simulation

- The deterministic dataflow paradigm makes it easy to model digital logic circuits.

- We show how to model combinational logic circuits (no memory) and sequential logic circuits (with memory).

- Signals in time are represented as streams; logic gates are represented as agents.
Real digital circuits consist of active circuit elements called gates which are interconnected using wires that carry digital signals.

A digital signal is a voltage in function of time. Digital signals are meant to carry two possible values, called 0 and 1, but they may have noise, glitches, ringing, and other undesirable effects.

A digital gate has input and output signals. The output signal is slightly delayed with respect to the input.

We will model gates as agents and signals as streams. This assumes perfectly clean signals and zero gate delay. We will later add a delay gate in order to model gate delay.
Digital signals as streams

- A signal is modeled by a stream that contains elements with values 0 or 1

\[S = a_0 | a_1 | a_2 | \ldots | a_i | \ldots \]

- Time instants are numbered from when the circuit starts running
- At instant \(i \), the signal’s value \(a_i \in \{0,1\} \)
Digital logic gates

- Some typical logic gates with their standard pictorial symbols and the boolean functions that define them
- But gates are not just boolean functions!
Digital gates as agents

- A gate is much more than a boolean function; it is an active entity that takes input streams and calculates an output stream.

```plaintext
fun {And A B} if A==1 andthen B==1 then 1 else 0 end end
fun {Loop S1 S2}
  case S1#S2 of (A|T1)#(B|T2) then {And A B}|{Loop T1 T2} end
end
thread Sc={Loop Sa Sb} end
```

- Example execution:
 - $S_x = 0|1|0|T_x$ % input signal x
 - $S_y = 1|1|0|T_y$ % input signal y
 - $S_z = 0|1|0|T_z$ % output signal z
Creating many gates

- Let us define a **proper abstraction** for building all the different kinds of logic gates we need
 - We define the function GateMaker that takes a two-argument boolean function Fun, where \{GateMaker Fun\} returns a function FunG that creates gates
 - Each call to FunG creates a running gate based on Fun
- This gives **three levels of abstraction** that we can compare with object-oriented programming:
 - GateMaker is analogous to a **generic class**
 - FunG is analogous to a **class**
 - A running gate is analogous to an **object**
GateMaker implementation

- Calling \{GateMaker \text{ F}\} creates a gate maker:

```plaintext
fun \{GateMaker \text{ F}\}
  fun \{$ Xs Ys\}
    fun \{GateLoop Xs Ys\}
      case Xs#Ys of (X|Xr)#(Y|Yr) then
        \{F X Y\}|\{GateLoop Xr Yr\}
      end
    end
  end
in
  thread \{GateLoop Xs Ys\} end
end
end
```
Making gates

- Each of these functions can make gates:

 \[
 \text{AndG} = \{ \text{GateMaker fun } \{ X \ Y \} \ X \ast Y \ \text{end} \} \\
 \text{OrG} = \{ \text{GateMaker fun } \{ X \ Y \} \ X + Y - X \ast Y \ \text{end} \} \\
 \text{NandG} = \{ \text{GateMaker fun } \{ X \ Y \} \ 1 - X \ast Y \ \text{end} \} \\
 \text{NorG} = \{ \text{GateMaker fun } \{ X \ Y \} \ 1 - X - Y + X \ast Y \ \text{end} \} \\
 \text{XorG} = \{ \text{GateMaker fun } \{ X \ Y \} \ X + Y - 2 \ast X \ast Y \ \text{end} \} \]