
Summary and
a bigger example
l  We summarize this lesson in a few sentences

l  A recursive function is equivalent to a loop if it is tail recursive
l  To write functions in this way, we need to find an accumulator
l  We find the accumulator starting from an invariant using the

principle of communicating vases
l  This is called invariant programming and it is the only reasonable

way to program loops
l  Invariant programming is useful in all programming paradigms

l  Now let’s tackle a bigger example!

A bigger example:
calculating XN
l  Let’s use invariant programming to define

a function {Pow X N} that calculates XN (N≥0)
l  Let’s start with a naive definition of xn:

 x0 = 1
 xn = x * xn-1 when n>0

l  This gives a first program for {Pow X N} :
 fun {Pow1 X N}
 if N==0 then 1
 else X*{Pow1 X N-1} end
 end

l  This function is highly inefficient in both time
and space! Why? (there are two reasons)

Using a better
definition of XN
l  Here is another definition of xn:

 x0 = 1
 xn = x * xn-1 when n>0 and n is odd

 xn = y2 when n>0 and n is even and y=xn/2
l  This definition uses many fewer multiplications

than the naive definition
l  And just like with the naive definition, we can use

this definition to write a program
l  Both definitions are also specifications

l  They are purely mathematical (no program code)

Second program
for XN
fun {Pow2 X N}

 if N==0 then 1
 elseif N mod 2 == 1 then
 X*{Pow2 X (N-1)}
 else Y in
 Y={Pow2 X (N div 2)}
 Y*Y
 end

end

This definition is better
than the first, but it is
still not tail recursive!

Calculating XN with
invariant programming
l  We can do better than Pow2

l  We can write a tail-recursive program: a true loop

l  We need an invariant
l  The invariant is the key to a good program
l  One part of the invariant will accumulate the result

and another part of the invariant will disappear
l  What can we accumulate?

Reasoning on
the invariant
l  Here is an invariant: (x and n constant; y, i, and a vary)

 xn = yi * a
l  We represent this invariant compactly as a triple:

 (y,i,a)
l  Initially: (y,i,a) = (x,n,1)
l  Let us decrease i while keeping the invariant true
l  There are two ways to decrease i :

l  (y,i,a) ⇒(y*y,i/2,a) (when i is even)
l  (y,i,a) ⇒(y,i-1,y*a) (when i is odd)

l  When i=0 then the answer is a

Third program
for XN
fun {Pow3 X N}

 fun {PowLoop Y I A}
 if I==0 then A
 elseif I mod 2 == 0 then
 {PowLoop Y*Y (I div 2) A}
 else {PowLoop Y (I-1) Y*A} end
 end

in
 {PowLoop X N 1}

end

This program is a true loop
(it is tail-recursive) and it

uses very few multiplications

Invariants
and goals
l  Changing one part of the invariant forces the rest to

change as well, because the invariant must remain true
l  The invariant’s truth drives the program forward

l  Programming a loop means finding a good invariant
l  Once a good invariant is found, coding is easy
l  Learn to think in terms of invariants!

l  Using invariants is a form of goal-oriented programming
l  We will see another example of goal-oriented programming

when we program with trees in lesson 5

