Summary and a bigger example

- We summarize this lesson in a few sentences
 - A recursive function is equivalent to a loop if it is tail recursive
 - To write functions in this way, we need to find an accumulator
 - We find the accumulator starting from an invariant using the principle of communicating vases
 - This is called invariant programming and it is the only reasonable way to program loops
 - Invariant programming is useful in all programming paradigms
- Now let's tackle a bigger example!

A bigger example: calculating X^N

- Let's use invariant programming to define a function {Pow X N} that calculates X^N (N≥0)
- Let's start with a naive definition of x^n : $x^0 = 1$

 $x^n = x * x^{n-1}$ when n > 0

- This gives a first program for {Pow X N} :
 fun {Pow1 X N}
 if N==0 then 1
 else X*{Pow1 X N-1} end
 end
- This function is highly inefficient in both time and space! Why? (there are two reasons)

Using a better definition of X^N

- Here is another definition of xⁿ:
 - $x^0 = 1$
 - $x^n = x * x^{n-1}$ when n > 0 and n is odd
 - x^n = y^2 when n > 0 and n is even and $y = x^{n/2}$
- This definition uses many fewer multiplications than the naive definition
 - And just like with the naive definition, we can use this definition to write a program
- Both definitions are also specifications
 - They are purely mathematical (no program code)

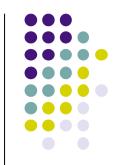
Second program for X^N

fun {Pow2 X N} if N==0 then 1 elseif N mod 2 == 1 then X*{Pow2 X (N-1)} else Y in $Y = \{Pow2 X (N div 2)\}$ Y*Y end end



This definition is better than the first, but it is still not tail recursive!

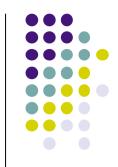
Calculating X^N with invariant programming



- We can do better than Pow2
 - We can write a tail-recursive program: a true loop
- We need an invariant
 - The invariant is the key to a good program
 - One part of the invariant will accumulate the result and another part of the invariant will disappear
 - What can we accumulate?

Reasoning on the invariant

- Here is an invariant: (x and n constant; y, i, and a vary) $x^n = y^i * a$
- We represent this invariant compactly as a triple: (y,i,a)
- Initially: (*y*,*i*,*a*) = (*x*,*n*,1)
- Let us decrease *i* while keeping the invariant true
- There are two ways to decrease *i* :
 - $(y,i,a) \Rightarrow (y^*y,i/2,a)$ (when *i* is even)
 - $(y,i,a) \Rightarrow (y,i-1,y^*a)$ (when *i* is odd)
- When *i=0* then the answer is *a*



Third program for X^N

fun {Pow3 X N} fun {PowLoop Y I A} if I==0 then A elseif | mod 2 == 0 then {PowLoop Y*Y (I div 2) A} else {PowLoop Y (I-1) Y*A} end end in This program is a true loop {PowLoop X N 1} (it is tail-recursive) and it uses very few multiplications end

Invariants and goals

- Changing one part of the invariant forces the rest to change as well, because the invariant must remain true
 - The invariant's truth *drives* the program forward
- Programming a loop means finding a good invariant
 - Once a good invariant is found, coding is easy
 - Learn to think in terms of invariants!
- Using invariants is a form of goal-oriented programming
 - We will see another example of goal-oriented programming when we program with trees in lesson 5