
Introduction to semantics 
l  Let’s introduce our semantics by means of an example 

l  First, let’s decide what the semantics will be used for in our example: 
l  To ensure that the program is correct (this is called verification) 
l  To make sure the program is well-designed 
l  To explain the program to others 
l  To calculate time and memory utilisation 
l  To understand how the program manages memory 

(in particular, how it does garbage collection) 

l  Let’s choose the first goal, namely correctness 



When is a program correct? 
l  “A program is correct when it does what we want it to” 
l  How can we be sure? 

l  There are two starting points: 
l  The program’s specification: a mathematical definition of the 

result of the program as a function of the input 
l  The language semantics: a precise mathematical model of how 

a program executes 

l  We need to prove that the program satisfies the 
specification, when it executes according to the 
semantics 



The three pillars 

l  The specification: 
what we want 

l  The program: 
what we have 

l  The semantics connects 
these two: proving that 
what we have executes 
according to what we 
want 

Specification 
(mathematics) 

Program 
(programming language) 

Semantics 



Example: 
correctness of factorial 
l  The specification of {Fact N}          (mathematics) 

  0!  =  1 
  n!  =  n × ((n-1)!)  when  n>0 

 

l  The program     (programming language) 
 fun {Fact N} 

     if N==0 then 1 else N*{Fact N-1} end 
 end 

 
l  The semantics connects the two 
 



Mathematical induction 
l  To make this proof for a recursive function we need to use 

mathematical induction 
l  A recursive function calculates on a recursive data structure, 

which has a base case and a general case 
l  We first show the correctness for the base case 
l  We then show that if the program is correct for a general case, it 

is correct for the next case 

l  For integers, the base case is usually 0 or 1, and the general 
case n-1 leads to the next case n 

l  For lists, the base case is usually nil or a small list, and the 
general case T leads to the next case H|T 



The inductive proof 
l  We must show that {Fact N} calculates n! for all n≥0 

l  Base case: n=0 
l  The specification says: 0!=1 
l  The execution of {Fact 0}, using the semantics, gives {Fact 0}=1 

l  It’s correct! 

l  General case: (n-1) → n 
l  The specification says: n! = n×(n-1)!   
l  The execution of {Fact N}, using the semantics, gives {Fact N} = N*{Fact N-1} 

l  We assume that {Fact N-1}=(n-1)! 
l  We assume that the language correctly implements multiplication 
l  Therefore: {Fact N} = N*{Fact N-1} = n×(n-1)! = n! 
l  It’s correct! 

l  Now we just need to understand the magic words “using the semantics”! 



How to execute a program 
using the semantics 
l  We execute the program using the semantics by following two steps 

l  First, we translate the program into kernel language 
l  The kernel language is a simple language that has all essential concepts 
l  All programs in the practical language can be translated into kernel 

language 
l  ➞ We translate the definition of Fact into kernel language 

l  Second, we execute the translated program on the abstract machine 
l  The abstract machine is a simplified computer with a precise mathematical 

definition 
l  ➞ We execute the call {Fact 0 R} on the abstract machine 



Executing Fact 
using the semantics 
l  We need to execute both {Fact 0} and {Fact N} using the semantics 
l  First we translate the definition of Fact into kernel language: 

 proc {Fact N R} 
 local B in 
  B=(N==0) 
  if B then R=1 
  else local N1 R1 in 
   N1=N-1 
   {Fact N1 R1} 
   R=N*R1 

              end 
  end 
 end 

 end 



Execution of {Fact 0}  (1) 
l  Let’s first look at the function call {Fact 0} 
l  We execute the procedure call {Fact N R} where N=0 
l  We need a memory σ and an environment E: 

 
σ = {fact=(proc {$ N R} … end,{Fact→fact }), n=0, r}     
E = {Fact→fact, N→n, R→r } 

l  Here is what we will execute: 
 

{Fact N R}, E, σ 



Execution of {Fact 0}  (2) 
l  To execute {Fact N R} we replace it by the procedure body 

l  The instruction: 
 
     {Fact N R}, {Fact→fact, N→n, R→r }, σ 
 
is replaced by the instruction: 
 
     local B in 
      B=(N==0) 
      if B then R=1 else … end 
     end, {Fact→fact, N→n, R→r }, σ 



Execution of {Fact 0}  (3) 
l  To execute the local instruction: 

 local B in 
       B=(N==0) 
       if B then R=1 else … end 

 end, {Fact→fact, N→n, R→r }, σ 
we do two operations: 
l  We extend the memory with a new variable b 
l  We extend the environment with {B → b} 

 

l  We then replace the instruction by its body:  
  B=(N==0) 
  if B then R=1 else … end, 

 {Fact→fact, N→n, R→r, B → b}, σ∪{b} 



Execution of {Fact 0}  (4) 
l  We now do the same for: 

     B=(N==0) 
and: 
     if B then R=1 else … end end 
 

l  This will first bind b=true and then bind r=1 
l  This completes the execution of {Fact 0} 

l  We have executed {Fact 0} with the semantics and 
shown that the result is 1 

l  To complete the proof, we still have to show that the 
result of {Fact N} is the same as N*{Fact N-1}    



We have proved the 
correctness of Fact 
l  Let’s recapitulate the approach 
l  Start with the specification and program of Fact 

l  We want to prove that the program satisfies the specification 
l  Since the function is recursive, our proof uses mathematical induction 

l  We need to prove the base case and the general case: 
l  Prove that {Fact 0} execution gives 1 
l  Prove that {Fact N} execution gives N*{Fact N-1} 

l  We prove both cases using the semantics and the Fact program 
l  To use the semantics, we first translate Fact into kernel language, and 

then we execute on the abstract machine 
l  This completes the proof 


