
Introduction to semantics
l  Let’s introduce our semantics by means of an example

l  First, let’s decide what the semantics will be used for in our example:
l  To ensure that the program is correct (this is called verification)
l  To make sure the program is well-designed
l  To explain the program to others
l  To calculate time and memory utilisation
l  To understand how the program manages memory

(in particular, how it does garbage collection)

l  Let’s choose the first goal, namely correctness

When is a program correct?
l  “A program is correct when it does what we want it to”
l  How can we be sure?

l  There are two starting points:
l  The program’s specification: a mathematical definition of the

result of the program as a function of the input
l  The language semantics: a precise mathematical model of how

a program executes

l  We need to prove that the program satisfies the
specification, when it executes according to the
semantics

The three pillars

l  The specification:
what we want

l  The program:
what we have

l  The semantics connects
these two: proving that
what we have executes
according to what we
want

Specification
(mathematics)

Program
(programming language)

Semantics

Example:
correctness of factorial
l  The specification of {Fact N} (mathematics)

 0! = 1
 n! = n × ((n-1)!) when n>0

l  The program (programming language)
 fun {Fact N}

 if N==0 then 1 else N*{Fact N-1} end
 end

l  The semantics connects the two

Mathematical induction
l  To make this proof for a recursive function we need to use

mathematical induction
l  A recursive function calculates on a recursive data structure,

which has a base case and a general case
l  We first show the correctness for the base case
l  We then show that if the program is correct for a general case, it

is correct for the next case

l  For integers, the base case is usually 0 or 1, and the general
case n-1 leads to the next case n

l  For lists, the base case is usually nil or a small list, and the
general case T leads to the next case H|T

The inductive proof
l  We must show that {Fact N} calculates n! for all n≥0

l  Base case: n=0
l  The specification says: 0!=1
l  The execution of {Fact 0}, using the semantics, gives {Fact 0}=1

l  It’s correct!

l  General case: (n-1) → n
l  The specification says: n! = n×(n-1)!
l  The execution of {Fact N}, using the semantics, gives {Fact N} = N*{Fact N-1}

l  We assume that {Fact N-1}=(n-1)!
l  We assume that the language correctly implements multiplication
l  Therefore: {Fact N} = N*{Fact N-1} = n×(n-1)! = n!
l  It’s correct!

l  Now we just need to understand the magic words “using the semantics”!

How to execute a program
using the semantics
l  We execute the program using the semantics by following two steps

l  First, we translate the program into kernel language
l  The kernel language is a simple language that has all essential concepts
l  All programs in the practical language can be translated into kernel

language
l  ➞ We translate the definition of Fact into kernel language

l  Second, we execute the translated program on the abstract machine
l  The abstract machine is a simplified computer with a precise mathematical

definition
l  ➞ We execute the call {Fact 0 R} on the abstract machine

Executing Fact
using the semantics
l  We need to execute both {Fact 0} and {Fact N} using the semantics
l  First we translate the definition of Fact into kernel language:

 proc {Fact N R}
 local B in
 B=(N==0)
 if B then R=1
 else local N1 R1 in
 N1=N-1
 {Fact N1 R1}
 R=N*R1

 end
 end
 end

 end

Execution of {Fact 0} (1)
l  Let’s first look at the function call {Fact 0}
l  We execute the procedure call {Fact N R} where N=0
l  We need a memory σ and an environment E:

σ = {fact=(proc {$ N R} … end,{Fact→fact }), n=0, r}
E = {Fact→fact, N→n, R→r }

l  Here is what we will execute:

{Fact N R}, E, σ

Execution of {Fact 0} (2)
l  To execute {Fact N R} we replace it by the procedure body

l  The instruction:

 {Fact N R}, {Fact→fact, N→n, R→r }, σ

is replaced by the instruction:

 local B in
 B=(N==0)
 if B then R=1 else … end
 end, {Fact→fact, N→n, R→r }, σ

Execution of {Fact 0} (3)
l  To execute the local instruction:

 local B in
 B=(N==0)
 if B then R=1 else … end

 end, {Fact→fact, N→n, R→r }, σ
we do two operations:
l  We extend the memory with a new variable b
l  We extend the environment with {B → b}

l  We then replace the instruction by its body:
 B=(N==0)
 if B then R=1 else … end,

 {Fact→fact, N→n, R→r, B → b}, σ∪{b}

Execution of {Fact 0} (4)
l  We now do the same for:

 B=(N==0)
and:
 if B then R=1 else … end end

l  This will first bind b=true and then bind r=1
l  This completes the execution of {Fact 0}

l  We have executed {Fact 0} with the semantics and
shown that the result is 1

l  To complete the proof, we still have to show that the
result of {Fact N} is the same as N*{Fact N-1}

We have proved the
correctness of Fact
l  Let’s recapitulate the approach
l  Start with the specification and program of Fact

l  We want to prove that the program satisfies the specification
l  Since the function is recursive, our proof uses mathematical induction

l  We need to prove the base case and the general case:
l  Prove that {Fact 0} execution gives 1
l  Prove that {Fact N} execution gives N*{Fact N-1}

l  We prove both cases using the semantics and the Fact program
l  To use the semantics, we first translate Fact into kernel language, and

then we execute on the abstract machine
l  This completes the proof

