
How to execute a program
using the semantics
l  We execute the program using the semantics by

following two steps
l  First, we translate the program into kernel language

l  The kernel language is a simple language that has all essential
concepts

l  All programs in the practical language can be translated into
kernel language

l  Second, we execute the translated program on the
abstract machine
l  The abstract machine is a simplified computer with a precise

mathematical definition
➞ Let’s take a closer look at the abstract machine

Kernel language
of the functional paradigm
l  <s> ::= skip

 | <s>1 <s>2
 | local <x> in <s> end
 | <x>1=<x>2
 | <x>=<v>
 | if <x> then <s>1 else <s>2 end
 | {<x> <y>1 … <y>n}
 | case <x> of <p> then <s>1 else <s>2 end

l  <v> ::= <number> | <procedure> | <record>
l  <number> ::= <int> | <float>
l  <procedure> ::= proc {$ <x>1 … <x>n} <s> end
l  <record>, <p> ::= <lit> | <lit>(<f>1:<x>1 … <f>n:<x>n)

Abstract machine
concepts
l  Single-assignment memory σ = {x1=10,x2,x3=20}

l  Variables and the values they are bound to
l  Environment E = {X → x, Y → y}

l  Link between identifiers and variables in memory
l  Semantic instruction (<s>,E)

l  An instruction with its environment
l  Semantic stack ST = [(<s>1,E1), …, (<s>n,En)]

l  A stack of semantic instructions
l  Execution state (ST,σ)

l  A pair of a semantic stack and the memory
l  Execution (ST1,σ1) → (ST2,σ2) → (ST3,σ3) → …

l  A sequence of execution states

Abstract machine
execution algorithm
l  procedure execute(<s>)

begin
 ST:=[(<s>,{})]; /* Initial semantic stack: empty environment */
 σ:={}; /* Initial memory: empty (no variables) */
 while (ST≠{}) do
 pop(ST, SI); /* Pop semantic instruction into SI */
 (ST,σ):=rule(SI, (ST,σ)); /* Execute SI */

 end
end

l  While the semantic stack is nonempty, pop the instruction at the top of the
semantic stack, and execute it according to its semantic rule

l  Each instruction of the kernel language has a rule that defines its execution
in the abstract machine

l  (Note: When we introduce concurrency, we will extend this algorithm to run
with more than one semantic stack)

