
Time and change
l  In the functional paradigm, there is no notion of time

l  All functions are mathematical functions; once defined they never change
l  Programs do execute on a real machine, but a program cannot observe

the execution of another program or of part of itself
l  It can only see the results of a function call, not the execution itself
l  Observing an execution of a program can only be done outside of the

program’s implementation

l  In the real world, there is time and change
l  Organisms change their behavior over time, they grow and learn
l  How can we model this in a program?

l  We need to add time to a program
l  Time is a complicated concept! Let us start with a simplified version of

time, an abstract time, that keeps the essential property that we need:
modeling change.

State as an abstract time (1)
l  Here’s one solution: We

define the abstract time as a
sequence of values and we
call it a state

l  A state is a sequence of
values calculated
progressively, which
contains the intermediate
results of a computation

l  The functional paradigm can
use state according to this
definition!

l  The definition of Sum given
here has a state

fun {Sum Xs A}
 case Xs
of nil then A
[] X|Xr then

 {Sum Xr A+X}
end

end

{Browse {Sum [1 2 3 4] 0}}

State as an abstract time (2)
l  The two arguments Xs and A give

us an implicit state

Xs A
[1 2 3 4] 0
[2 3 4] 1
[3 4] 3
[4] 6
nil 10

l  It is implicit because the language
has not changed
l  It is purely in the programmer’s head:

the programmer observes the
changes in the program

l  In most cases this is not good
enough: we want the program itself
to observe the changes
l  We need a language extension!
l  We leave the functional paradigm

and enter another paradigm

fun {Sum Xs A}
 case Xs
of nil then A
[] X|Xr then

 {Sum Xr A+X}
end

end

{Browse {Sum [1 2 3 4] 0}}

