
Abstract data types
l  An ADT consists of a set of values and

a set of operations
l  A common example: integers

l  Values: 1, 2, 3, …
l  Operations: +, -, *, div, …

l  In most of the popular uses of ADTs,
the values and operations have no state
l  The values are constants
l  The operations have no internal memory

(they don’t remember anything in between calls)

A stack ADT
l  We can implement a stack as an ADT:

l  Values: all possible stacks and elements
l  Operations: NewStack, Push, Pop, IsEmpty

l  The operations take (zero or more) stacks and elements
as input and return (zero or more) stacks and elements
as output
l  S={NewStack}
l  S2={Push S X}
l  S2={Pop S X}
l  {IsEmpty S}

l  For example:
l  S={Push {Push {NewStack} a} b} returns the stack S=[b a]
l  S2={Pop S X} returns the stack S2=[a] and the top X=b

Unencapsulated
implementation
l  The stack we saw before is almost an ADT:

l  fun {NewStack} nil end
l  fun {Push S X} X|S end
l  fun {Pop S X} X=S.1 S.2 end
l  fun {IsEmpty S} S==nil end

l  Here the stack is represented by a list
l  But this is not a data abstraction, since the list is not protected

l  How can we protect the list, and make this a true ADT?
l  How can we build an abstract data type with encapsulation?
l  We need a way to protect values

Encapsulation using
a secure wrapper
l  To protect the values, we will use a secure wrapper:

l  The two functions Wrap and Unwrap will “wrap” and “unwrap” a value
l  W={Wrap X} % Given X, returns a protected version W
l  X={Unwrap W} % Given W, returns the original value X

l  The simplest way to understand this is to consider that Wrap and
Unwrap do encryption and decryption using a shared key that is
only known by them

l  We need a new Wrap/Unwrap pair for each ADT that we want to
protect, so we use a procedure that creates them:
l  {NewWrapper Wrap Unwrap} creates the functions Wrap and Unwrap
l  Each call to NewWrapper creates a pair with a new shared key

l  We will not explain here how to implement NewWrapper, but if you
are curious you can look in the book (Section 3.7.5)

Implementing
the stack ADT
l  Now we can implement a true stack ADT:

local Wrap Unwrap in

 {NewWrapper Wrap Unwrap}

 fun {NewStack} {Wrap nil} end
 fun {Push W X} {Wrap X|{Unwrap W}} end
 fun {Pop W X} S={Unwrap W} in X=S.1 {Wrap S.2} end
 fun {IsEmpty W} {Unwrap W}==nil end

end

l  How does this work? Look at the Push function: it first calls
{Unwrap W}, which returns a stack value S, then it builds X|S,
and finally it calls {Wrap X|S} to return a protected result

l  Wrap and Unwrap are hidden from the rest of the program
(static scoping)

Final remarks on ADTs
l  ADT languages have a long history

l  The language CLU, developed by Barbara Liskov and her
students in 1974, is the first

l  This is only a little bit later than the first object-oriented
language Simula 67 in 1967

l  Both CLU and Simula 67 strongly influenced later object-
oriented languages up to the present day

l  ADT languages support a protection concept similar
to Wrap/Unwrap
l  CLU has syntactic support that makes the creation of ADTs

very easy
l  Many object-oriented languages also support ADTs

l  For example, we will see that Java objects are also ADTs

