Abstract data types

e An ADT consists of a set of values and
a set of operations

e A common example: integers
Values: 1, 2, 3, ...
Operations: +, -, *, div, ...
e In most of the popular uses of ADTs,
the values and operations have no state
The values are constants

The operations have no internal memory
(they don’t remember anything in between calls)



A stack ADT

e \We can implement a stack as an ADT:
Values: all possible stacks and elements
Operations: NewStack, Push, Pop, IsEmpty

e The operations take (zero or more) stacks and elements

as input and return (zero or more) stacks and elements
as output

S={NewStack}
S2={Push S X}
S2={Pop S X}
{IsEmpty S}

e For example:

S={Push {Push {NewStack} a} b} returns the stack S=[b a]
S2={Pop S X} returns the stack S2=[a] and the top X=b




Unencapsulated T
implementation

e [he stack we saw before is almost an ADT:

fun {NewStack} nil end

fun {Push S X} X|S end

fun {Pop S X} X=S.1 S.2 end
fun {IsEmpty S} S==nil end

e Here the stack is represented by a list
e But this is not a data abstraction, since the list is not protected

e How can we protect the list, and make this a true ADT?
e How can we build an abstract data type with encapsulation?
e \We need a way to protect values



Encapsulation using oS
a secure wrapper

e To protect the values, we will use a secure wrapper:
e The two functions Wrap and Unwrap will “wrap” and “unwrap” a value
o W={Wrap X} % Given X, returns a protected version W
o X={Unwrap W} % Given W, returns the original value X

e The simplest way to understand this is to consider that Wrap and
Unwrap do encryption and decryption using a shared key that is
only known by them

e We need a new Wrap/Unwrap pair for each ADT that we want to
protect, so we use a procedure that creates them:
o {NewWrapper Wrap Unwrap} creates the functions Wrap and Unwrap
e Each call to NewWrapper creates a pair with a new shared key

e We will not explain here how to implement NewWrapper, but if you
are curious you can look in the book (Section 3.7.5)



Implementing T
the stack ADT

e Now we can implement a true stack ADT:

local Wrap Unwrap in
{NewWrapper Wrap Unwrap}

fun {NewStack} {Wrap nil} end
fun {Push W X} {Wrap X|{Unwrap W}} end
fun {Pop W X} S={Unwrap W} in X=S.1 {Wrap S.2} end
fun {IsEmpty W} {Unwrap W}==nil end
end

e How does this work? Look at the Push function: it first calls
{Unwrap W}, which returns a stack value S, then it builds X|S,
and finally it calls {Wrap X|S} to return a protected result

e Wrap and Unwrap are hidden from the rest of the program
(static scoping)



Final remarks on ADTs

e ADT languages have a long history

The language CLU, developed by Barbara Liskov and her
students in 1974, is the first

This is only a little bit later than the first object-oriented
language Simula 67 in 1967

Both CLU and Simula 67 strongly influenced later object-
oriented languages up to the present day

e ADT languages support a protection concept similar
to Wrap/Unwrap

CLU has syntactic support that makes the creation of ADTs
very easy

e Many object-oriented languages also support ADTs
For example, we will see that Java objects are also ADTs



