Static typing T
versus dynamic typing

e A major property of a language is whether it is
statically or dynamically typed

e Static typing: Variable types are known at compile time
Java, Scala, Haskell
e Dynamic typing: Variable types are not known at compile time
but only at run time
Ruby, Python, Erlang, Scheme, Oz (language of this course)

e Static typing versus dynamic typing?
This question evokes intense debate between language designers
The main issues are guarantees and flexibility

Java augments static typing with concepts to increase flexibility
An Obiject class that is the root of the class hierarchy

The ability to define class code at run time with a class loader

Types in Java

e Two kinds of types: primitive types and reference types
User-defined types (e.g., classes) are reference types

e Primitive type: boolean (1 bit), character (16 bits), byte (8 bit
integer, -128..127), short (16), int (32), long (64), float (32),
double (64)

Characters: Unicode standard (all written languages)

Integers: representation in 2’'s complement
Floating point: IEEE754 standard

e Reference type: class, interface, or array
A value is either “null” or a reference to an object or an array
An array type has the form t[] where t can be any type

Object-oriented T
programming in Java

e Data abstraction in Java
Primitive types are ADTs, user-defined types are objects

Rules of visibility
Private, package, protected, public
Objects of the same class can see inside each other (ADT property)

e Polymorphism in Java

Static polymorphism: Methods in the same class with the same name
but different argument types (a.k.a. method overloading)

Dynamic polymorphism: Methods with the same name in different classes

e Inheritance in Java

Support for the substitution principle: an argument of a given class type
will accept objects of any subclass

Support for multiple inheritance using a new concept called interface
(a specific form of a general data abstraction interface)

Functional
programming in Java

e Not much support for functional paradigm

More support is being added as Java evolves
(lambda expressions in Java 8, which are procedure values)

Problem of legacy code!

Scala has full support for functional paradigm

e Final attributes and variables: can only be assigned once
Objects can be immutable, but are not functional objects

e Final classes: cannot be extended with inheritance

e “inner classes”: a class defined inside another class
An instance of an inner class is almost (but not completely) a

procedure value

