
Static typing 
versus dynamic typing 
l  A major property of a language is whether it is 

statically or dynamically typed 

l  Static typing: Variable types are known at compile time 
l  Java, Scala, Haskell 

l  Dynamic typing: Variable types are not known at compile time 
but only at run time 
l  Ruby, Python, Erlang, Scheme, Oz (language of this course) 

l  Static typing versus dynamic typing? 
l  This question evokes intense debate between language designers 
l  The main issues are guarantees and flexibility 
l  Java augments static typing with concepts to increase flexibility 

l  An Object class that is the root of the class hierarchy 
l  The ability to define class code at run time with a class loader 



Types in Java 
l  Two kinds of types: primitive types and reference types 

l  User-defined types (e.g., classes) are reference types 

l  Primitive type: boolean (1 bit), character (16 bits), byte (8 bit 
integer, -128..127), short (16), int (32), long (64), float (32), 
double (64) 
l  Characters: Unicode standard (all written languages) 
l  Integers: representation in 2’s complement 
l  Floating point: IEEE754 standard 

l  Reference type: class, interface, or array 
l  A value is either “null” or a reference to an object or an array 
l  An array type has the form t[] where t can be any type 



Object-oriented 
programming in Java 
l  Data abstraction in Java 

l  Primitive types are ADTs, user-defined types are objects 
l  Rules of visibility 

l  Private, package, protected, public 
l  Objects of the same class can see inside each other (ADT property) 

l  Polymorphism in Java 
l  Static polymorphism: Methods in the same class with the same name 

but different argument types (a.k.a. method overloading) 
l  Dynamic polymorphism: Methods with the same name in different classes 

l  Inheritance in Java 
l  Support for the substitution principle: an argument of a given class type 

will accept objects of any subclass 
l  Support for multiple inheritance using a new concept called interface 

(a specific form of a general data abstraction interface) 



Functional 
programming in Java 
l  Not much support for functional paradigm 

l  More support is being added as Java evolves 
(lambda expressions in Java 8, which are procedure values) 
l  Problem of legacy code! 

l  Scala has full support for functional paradigm 

l  Final attributes and variables: can only be assigned once 
l  Objects can be immutable, but are not functional objects 

l  Final classes: cannot be extended with inheritance 

l  “inner classes”: a class defined inside another class 
l  An instance of an inner class is almost (but not completely) a 

procedure value 


