
Functions
l  We would like to execute the same code many times,

each time with different values for some of the identifiers
l  To avoid repeating the same code, we can define a function

l  Functions are shortcuts for program code to execute,
just as variables are shortcuts for values
l  To be precise, functions are just another kind of value in memory,

like numbers (as we will see later)
l  Function Sqr returns the square of its input:

declare
fun {Sqr X} X*X end

l  The fun keyword identifies the function. The identifier Sqr refers
to a variable that is bound to the function.

Numbers
l  There are two kinds of numbers in Oz

l  Exact numbers: integers
l  Approximate numbers: floating point

l  Integers are exact (arbitrary precision)
l  Floats are approximations of real numbers

(up to 15 digits precision – 64-bit internally)
l  There is never any automatic conversion

from exact to approximate and vice versa
l  To convert, we use functions IntToFloat or FloatToInt
l  Design principle: don’t mix incompatible concepts

Sum of digits
function
l  Function SumDigits calculates the sum of digits

of a three-digit positive integer:

declare
fun {SumDigits N}
 (N mod 10) + ((N div 10) mod 10) +
 ((N div 100) mod 10)
end

l  mod and div are integer functions
l  / (division) is a float function
l  * (multiplication) is a function on both floats and integers

