Functions

e \We would like to execute the same code many times,
each time with different values for some of the identifiers

To avoid repeating the same code, we can define a function

e Functions are shortcuts for program code to execute,
just as variables are shortcuts for values

To be precise, functions are just another kind of value in memory,
like numbers (as we will see later)

e Function Sqr returns the square of its input:

declare
fun {Sqgr X} X*X end

e The fun keyword identifies the function. The identifier Sqr refers
to a variable that is bound to the function.



Numbers

e There are two kinds of numbers in Oz
e Exact numbers: integers
o Approximate numbers: floating point

e Integers are exact (arbitrary precision)
e Floats are approximations of real numbers
(up to 15 digits precision — 64-bit internally)
e There Is never any automatic conversion
from exact to approximate and vice versa
e To convert, we use functions IntToFloat or FloatTolnt
e Design principle: don’t mix incompatible concepts



Sum of digits T
function

e Function SumDigits calculates the sum of digits
of a three-digit positive integer:

declare

fun {SumDigits N}
(N mod 10) + ((N div 10) mod 10) +
((N div 100) mod 10)

end

e mod and div are integer functions
e / (division) is a float function
e * (multiplication) is a function on both floats and integers



