
Recursion 
and loops 
l  In the previous lesson we saw SumDigitsR: 

 
fun {SumDigitsR N} 

 if (N==0) then 0 
 else (N mod 10) + {SumDigitsR (N div 10)} end 

end 
 

l  The recursive call and the condition together act like a 
loop: a calculation that is repeated to achieve a result 
l  Each execution of the function body is one iteration of the loop 

l  Recursion can be used to make a loop 
l  In this lesson we will go to the root of this intuition 



Invariant 
programming 
l  A loop is a part of a program that is repeated until a 

condition is satisfied 
l  Loops are an important technique in all paradigms 
l  Loops are a special case of recursion, called tail recursion, where 

the recursive call is the last operation done in the function body 

l  We will give a general technique, invariant programming, 
to program correct and efficient loops 
l  Loops are often very difficult to get exactly right, and invariant 

programming is an excellent way to achieve this 
l  This applies to both declarative and imperative paradigms 

l  New concepts introduced in this lesson 
l  Specification, accumulator, principle of communicating vases 


