
Representations
for lists
l  The EBNF rule gives one textual representation

l  <List <Int>> ⇒
10 | <List <Int>> ⇒
10 | 11 | <List <Int>> ⇒
10 | 11 | 12 | <List <Int>> ⇒
10 | 11 | 12 | nil

l  Oz allows another textual representation
l  Bracket notation: [10 11 12]
l  In memory, [10 11 12] is identical to 10 | 11 | 12 | nil
l  Different textual representations of the same thing are

called syntactic sugar

We repeatedly replace the
left-hand side of the rule
by a possible value, until
no more can be replaced

Graphical representation
of a list

l  Graphical representations are
very useful for reasoning
l  Humans have very powerful visual

reasoning abilities

l  We start from the leftmost
pair, namely 10 | <List <Int>>
l  We draw three nodes with arrows

between them
l  We then replace the node

<List <Int>> as before

l  This is an example of a more
general structure called a tree

‘|’

10 ‘|’

11 ‘|’

12 nil

Trees and binary trees

l  A tree is either a leaf node (which is an empty tree) or a
root node with arrows to a set of trees (called subtrees)

l  A binary tree is a tree where all root nodes have exactly
two subtrees (usually called left and right)

r

rL rR

l1 l2 l3 l4

