
Functions that
create lists
l  Let us now define a function that outputs a list

l  We will use both pattern matching and recursion,
as before, but this time the output will also be a list

l  We will define the Append function

l  The simple Append function is tail recursive
l  We will see this by translating Append into the

kernel language of the functional paradigm
l  This translation shows that the recursive call is last
l  This works because of single assignment: we create

the output list before doing the recursive call

The kernel
language
l  As we mentioned in lesson 1, the kernel language is

the simple core language of a programming paradigm
l  We have now seen enough concepts to introduce the

kernel language of the functional paradigm

l  All programs in the functional paradigm can be translated
into the kernel language
l  All intermediate results of calculations are visible with identifiers
l  All functions become procedures with one extra argument
l  Nested function calls are unnested by introducing new identifiers

l  The kernel language is the first part of the formal semantics
of a programming language
l  The second part is the abstract machine seen in lesson 6

Kernel
principle

Kernel language of the
functional paradigm
l  <s> ::= skip

 | <s>1 <s>2
 | local <x> in <s> end
 | <x>1=<x>2
 | <x>=<v>
 | if <x> then <s>1 else <s>2 end
 | proc {<x> <x>1 … <x>n} <s> end
 | {<x> <y>1 … <y>n}
 | case <x> of <p> then <s>1 else <s>2 end

l  <v> ::= <number> | <list> | ...
l  <number> ::= <int> | <float>
l  <list>, <p> ::= nil | <x> | <x> ‘|’ <list>

Almost complete!

We will see the full kernel
language in lesson 4

