
Thinking about
performance
l  Let’s think some more about performance

l  How can we increase it? There are two ways, with one big caveat...

1.  New processor hardware
l  Just wait and buy next year’s faster machine
l  Moore’s Law is an empirical law that fits this increase well
l  It is still true even though clock speed has leveled off since 2004

2.  Program optimization
l  Use a faster (but perhaps more complex) algorithm	

l  But be careful: “Premature optimization is the root of all evil”

(Donald Knuth, “The Art of Computer Programming”)

3.  Intractable problems and the P=NP question
l  Some problems seem to be inherently time consuming
l  But is it really true? The P=NP question is still unanswered!

Moore’s Law (1)
l  The density of integrated circuits doubles around every two years

l  First observed by Gordon E. Moore in 1965
l  This behavior continues to hold now (and will for a few years more)!
l  The origins of this law are both economic and technological

l  “Performance doubles around every 18 months”
l  A false but widespread interpretation of Moore’s Law
l  This seems to be true as well

l  On the other hand, clock speed does not improve in the same way!
l  We are currently at a “plateau” with a clock speed of around 3 GHz

which has not increased since 2004 (with current silicon technology)
l  But circuit density is still increasing ⇒ multicore processors
l  How can we program a multicore processor? We will see later on!

Moore’s Law (2)
Moore’s Law
(still valid in 2014)

Clock speed
(plateau at 3 GHz since 2004)

Clock ≈ 30 GHz in 2010 if it would
have increased in the same way as
the transistor density

Should we
optimize programs?

l  Sometimes the performance of an algorithm is insufficient
l  We can use several techniques to improve performance

l  Develop a better algorithm (requires thinking!)
l  Use a general technique such as memoization: keep the results

of previous computations to avoid recomputing them
l  Memoization can convert an exponential version of the Fibonacci

algorithm into a linear time version
l  In general, it is possible to improve performance up to a

certain point, after which the improvements get smaller and
smaller with more and more complex algorithms

l  “Premature optimization is the root of all evil” (D. E. Knuth)
l  Never do optimization before the need is manifest. Always start

with a simple algorithm.

