Thinking about T
performance

e Let's think some more about performance
How can we increase it? There are two ways, with one big caveat...

1. New processor hardware

Just wait and buy next year’s faster machine

Moore’s Law is an empirical law that fits this increase well

It is still true even though clock speed has leveled off since 2004
2. Program optimization

Use a faster (but perhaps more complex) algorithm

But be careful: “Premature optimization is the root of all evil”
(Donald Knuth, “The Art of Computer Programming”)

3. Intractable problems and the P=NP question

Some problems seem to be inherently time consuming
But is it really true? The P=NP question is still unanswered!



Moore’s Law (1)

e The density of integrated circuits doubles around every two years
First observed by Gordon E. Moore in 1965
This behavior continues to hold now (and will for a few years more)!
The origins of this law are both economic and technological

e “Performance doubles around every 18 months”
A false but widespread interpretation of Moore’s Law
This seems to be true as well

e On the other hand, clock speed does not improve in the same way!

We are currently at a “plateau” with a clock speed of around 3 GHz
which has not increased since 2004 (with current silicon technology)

But circuit density is still increasing = multicore processors
How can we program a multicore processor? We will see later on!



Moore’s Law (2)

10,000,000

1,000,000

DuaI Core Itanium 2

Moore’s Law
(still valid in 2014)

Intel

{sources: Intel,

CPU

Wikipe

Trends
dia, K. 0Iukotun)

s

100,000

10,000

Clock = 30 GHz in 2010 if it would

@ <«—— have increased in the same way as

the transistor density

1,000

+<— Clock speed
(plateau at 3 GHz since 2004)

100

10

)
P

/ (X J & A T
|

|

i A

1 ! m Transistors (000) |

4 ° b @ Clock Speed (MHz)

X 4 APower (W)
@ Perf/Clock (ILP)

0 l \
1970 1975 1980 1985 1990 1995 2000 2005 2010



Should we ees
optimize programs?

e Sometimes the performance of an algorithm is insufficient

e We can use several techniques to improve performance
Develop a better algorithm (requires thinking!)

Use a general technique such as memoization: keep the results
of previous computations to avoid recomputing them

Memoization can convert an exponential version of the Fibonacci
algorithm into a linear time version

e In general, it is possible to improve performance up to a
certain point, after which the improvements get smaller and
smaller with more and more complex algorithms

e “Premature optimization is the root of all evil” (D. E. Knuth)

Never do optimization before the need is manifest. Always start
with a simple algorithm.



