
Trees
l  Trees are the second most important data structure in

computing, next to lists
l  Trees are extremely useful for efficiently organizing information

and performing many kinds of calculations

l  Trees illustrate well goal-oriented programming
l  Many tree data structures are based on a global property, that

must be maintained during the calculation

l  In this lesson we will define trees and use them to store
and look up information
l  We will define ordered binary trees and algorithms to add

information, look up information, and remove information

Trees

l  A tree is a recursive structure: it is either an empty
tree (called a leaf) or an element and a set of trees

<tree T> ::= leaf | t(T <tree T> ... <tree T>)

root node

subtrees

Example tree
l  declare

T=t(100 t(10 leaf leaf leaf) t(20 leaf leaf leaf) leaf)

100

10 20

leaf leaf leaf leaf leaf leaf

leaf

Trees compared
to lists

l  A tree is a recursive structure: it is either an empty
tree (called a leaf) or an element and a set of trees

<tree T> ::= leaf | t(T <tree T> ... <tree T>)

<list T> ::= nil | ‘|’(T <list T>)

l Notice the
similarity with lists!

