Deleting an element from an T
ordered binary tree

The problem is to repair the tree after X disappears



Deleting an element when
one subtree is empty

£ e

It's easy when one of the subtrees is empty:
just replace the tree by the other subtree




Deleting an element when T
both subtrees are not empty

remove X .. move Y

:> e :>

The idea is to fill the "hole” that appears after X is
removed. We can put there the smallest element
In the right subtree, namely Y.



We need a new function: -
RemoveSmallest

fun {Delete K T}
case T

of leaf then leaf @
[] tree(key:X value:V left:T1 right:T2) andthen K==X then
case {RemoveSmallest T2}
of none then T1
[] triple(Tp Yp Vp) then
tree(key:Yp value:Vp left:T1 right:Tp) «—>

end
[]...end j
end

e RemoveSmallest takes a tree and returns three values:
e The new subtree Tp without the smallest element
e The smallest element’s key Yp
e The smallest element’s value Vp

e \With these three values we can build the new tree where
Yp is the root and Tp is the new right subtree




Recursive definition of oo
RemoveSmallest

fun {RemoveSmallest T}
case T
of leaf then none
[] tree(key:X value:V left:T1 right:T2) then
case {RemoveSmallest T1}
of none then triple(T2 X V)
[] triple(Tp Xp Vp) then
triple(tree(key:X value:V left:Tp right:T2) Xp Vp)
end
end
end

To understand
this definition,
draw diagrams
with trees!

e RemoveSmallest takes a tree T and returns:
e The atom none when T is empty
e The record triple(Tp Xp Vp) when T is not empty



