What is the execution time of my program?

- I can measure the number of seconds for a given input
 - My trusty iPhone 13 takes 5 seconds (
 ⁽ⁱ⁾) to compute the eigenvalues of a web link matrix of size 10⁹×10⁹ (PageRank)
 - This is not very useful information (not much can be inferred from it except that I have a fast processor in my phone)
- More interesting is to see how the execution time *depends* on the input size (for *predicting* the time)
 - This is a *function* not a *number*
- Even more interesting is to see how the execution time changes when the input size *increases without bound*
 - This is called *asymptotic analysis*
 - What happens when the web link matrix gets bigger and bigger?

Asymptotic analysis and computational complexity

- What *function* gives the execution time in function of the input size, when the size *increases without bound*?
 - Asymptotic analysis is finding an approximation whose error tends to zero when a parameter tends to infinity
- If we know this function, we can infer many things
 - What is the time for a given input size?
 - What is the maximum input size for a given time?
 - How does the maximum input size change if I buy a computer that is 256 times faster?
- Computational complexity is the use of asymptotic analysis to study the execution time and memory use of programs
 - The word « complexity » is used in a different way than in everyday life

Fast-growing functions are bad

- Assume *f*(*n*) is the time in microseconds for input size *n*
- What is the *time* for a given input size?

Size \ f(n)	n	400n	2n ²	n ⁴	2 ⁿ
1	1 µs	400 µs	2 µs	1 µs	2 µs
1000	1000 µs	0,4 s	2 s	11d 14h	5×10 ²⁹¹ y
1000000	1 s	400 s	23d 4h	3×10 ¹⁰ y	5×10 ³⁰¹⁰²⁰ y

• What is the *maximum input size* for a given time?

Red = we can't wait that long

<i>f(n)</i> \ Time	1 second	1 minute	1 hour
n	1 x 10 ⁶	6 x 10 ⁷	3.6 x 10 ⁹
400n	2500	150 000	9 x 10 ⁶
2n ²	707	5477	42426
n ⁴	31	88	244
2 ⁿ	19	25	31

Red = we can't do big problems

Constant factors can be ignored

• How does the maximum input size *m* change if I buy a computer that is 256 times faster?

- The exponential function 2ⁿ is very bad: size is only incremented, not multiplied (so it never gets very big!)
- The constant factor (*n* versus 400n) does not matter

A mathematical concept: big-O notation

• Big-O notation captures the intuitions of "size increases without bound" and "constant factors can be ignored":

 $f(n) \in O(\underline{g(n)})$

means that f(n) has upper bound g(n) with some constant factor c and given that n is sufficiently large (bigger than some n_0)

 $f(n) \in O(g(n))$ iff $\exists c > 0, \exists n_0 \ge 1$ such that $\forall n \ge n_0$: $f(n) \le c \cdot g(n)$

Using big-O notation

- $2n+10 \in O(n)$ since $2n+10 \le 4 \times n$ for $n \ge 5$
- This is the best upper bound: we can't do better than g(n)=n
- $2n+10 \in O(n^2)$

since $2n+10 \le 1 \times n^2$ for $n \ge 5$

- This is not a very good upper bound (see previous example)
- $2^{100} \in O(1)$ since $2^{100} \le 2^{100} \le 1$ for $n \ge 1$
- Constants are constants no matter how large!
- $3n^2 + 10n \log_{10} n + 125n + 100 \in O(n^2)$ since $3n^2 + 10n \log_{10} n + 125n + 100 \le 4 \times n^2$ for $n \ge 148$ We keep dominant terms and remove constant factors
- The function *g(n)* is called the *temporal complexity* of the program

