What is the execution time of my program?

- I can measure the number of seconds for a given input
- My trusty iPhone 13 takes 5 seconds (:) to compute the eigenvalues of a web link matrix of size $10^{9} \times 10^{9}$ (PageRank)
- This is not very useful information (not much can be inferred from it except that I have a fast processor in my phone)
- More interesting is to see how the execution time depends on the input size (for predicting the time)
- This is a function not a number
- Even more interesting is to see how the execution time changes when the input size increases without bound
- This is called asymptotic analysis
- What happens when the web link matrix gets bigger and bigger?

Asymptotic analysis and computational complexity

- What function gives the execution time in function of the input size, when the size increases without bound?
- Asymptotic analysis is finding an approximation whose error tends to zero when a parameter tends to infinity
- If we know this function, we can infer many things
- What is the time for a given input size?
- What is the maximum input size for a given time?
- How does the maximum input size change if I buy a computer that is 256 times faster?
- Computational complexity is the use of asymptotic analysis to study the execution time and memory use of programs
- The word « complexity » is used in a different way than in everyday life

Fast-growing functions are bad

- Assume $f(n)$ is the time in microseconds for input size n
- What is the time for a given input size?

Size $\backslash f(n)$	n	$400 n$	$2 n^{2}$	n^{4}	2^{n}
1	$1 \mu \mathrm{~s}$	$400 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$
1000	$1000 \mu \mathrm{~s}$	$0,4 \mathrm{~s}$	2 s	11 d 14 h	$5 \times 10^{291} \mathrm{y}$
1000000	1 s	400 s	23 d 4 h	$3 \times 10^{10} \mathrm{y}$	$5 \times 10^{301020} \mathrm{y}$

- What is the maximum input size for a given time?

Red = we can't wait that long

$f(n) \backslash$ Time	1 second	1 minute	1 hour
n	1×10^{6}	6×10^{7}	3.6×10^{9}
$400 n$	2500	150000	9×10^{6}
$2 n^{2}$	707	5477	42426
n^{4}	31	88	244
2^{n}	19	25	31

Red = we can't do big problems

Constant factors can be ignored

- How does the maximum input size m change if I buy a computer that is 256 times faster?
$\left.\begin{array}{|c|c|}\hline \mathrm{f}(\mathrm{n}) & \text { New maximum size } \\ \hline n & 256 m \\ \hline 400 n & 256 m \\ \hline 2 n^{2} & 16 m \\ \hline n^{4} & 4 m \\ \hline 2^{n} & m+8 \\ \hline\end{array}\right\}$ Size is multiplied :-)
- The exponential function 2^{n} is very bad: size is only incremented, not multiplied (so it never gets very big!)
- The constant factor (n versus 400n) does not matter

A mathematical concept: big-O notation

- Big-O notation captures the intuitions of "size increases without bound" and "constant factors can be ignored":

$$
\mathrm{f}(\mathrm{n}) \in O(g(n))
$$

means that $f(n)$ has upper bound $g(n)$ with some constant factor c and given that n is sufficiently large (bigger than some n_{0})

$$
f(n) \in O(g(n)) \quad \text { iff } \quad \exists c>0, \exists n_{0} \geq 1 \text { such that } \forall n \geq n_{0}: f(n) \leq c \cdot g(n)
$$

Starting from n_{0}, $f(n)$ is always below $c \cdot g(n)$

Using big-O notation

- $2 n+10 \in O$ (n) since $2 n+10 \leq 4 \times n$ for $n \geq 5$
- This is the best upper bound: we can't do better than $g(n)=n$
- $2 n+10 \in O\left(n^{2}\right)$ since $2 n+10 \leq 1 \times n^{2}$ for $n \geq 5$
- This is not a very good upper bound (see previous example)
- $2^{100} \in O(1) \quad$ since $2^{100} \leq 2^{100} \times 1$ for $n \geq 1$
- Constants are constants no matter how large!
- $3 n^{2}+10 n \log _{10} n+125 n+100 \in O\left(n^{2}\right)$
since $3 n^{2}+10 n \log _{10} n+125 n+100 \leq 4 \times n^{2}$ for $n \geq 148$
We keep dominant terms and remove constant factors
- The function $g(n)$ is called the temporal complexity of the program

