
What is the execution
time of my program?
l  I can measure the number of seconds for a given input

l  My trusty iPhone 13 takes 5 seconds (😀) to compute the
eigenvalues of a web link matrix of size 109×109 (PageRank)

l  This is not very useful information (not much can be inferred from
it except that I have a fast processor in my phone)

l  More interesting is to see how the execution time
depends on the input size (for predicting the time)
l  This is a function not a number

l  Even more interesting is to see how the execution time
changes when the input size increases without bound
l  This is called asymptotic analysis
l  What happens when the web link matrix gets bigger and bigger?

Asymptotic analysis and
computational complexity
l  What function gives the execution time in function of the input size,

when the size increases without bound?
l  Asymptotic analysis is finding an approximation whose error tends to

zero when a parameter tends to infinity

l  If we know this function, we can infer many things
l  What is the time for a given input size?
l  What is the maximum input size for a given time?
l  How does the maximum input size change

if I buy a computer that is 256 times faster?

l  Computational complexity is the use of asymptotic analysis to study
the execution time and memory use of programs
l  The word « complexity » is used in a different way than in everyday life

Fast-growing functions
are bad
l  Assume f(n) is the time in microseconds for input size n
l  What is the time for a given input size?

l  What is the maximum input size for a given time?

f(n) \ Time 1 second 1 minute 1 hour

n 1 x 106 6 x 107 3.6 x 109
400n 2500 150 000 9 x 106
2n2 707 5477 42426
n4 31 88 244
2n 19 25 31

Size \ f(n) n 400n 2n2 n4 2n
1 1 µs 400 µs 2 µs 1 µs 2 µs

1000 1000 µs 0,4 s 2 s 11d 14h 5×10291 y
1000000 1 s 400 s 23d 4h 3×1010 y 5×10301020 y

Red = we can’t
wait that long

Red = we can’t
do big problems

Constant factors can
be ignored
l  How does the maximum input size m change

if I buy a computer that is 256 times faster?

l  The exponential function 2n is very bad: size is only
incremented, not multiplied (so it never gets very big!)

l  The constant factor (n versus 400n) does not matter

f(n) New maximum size
n 256m

400n 256m
2n2 16m
n4 4m
2n m+8

Size is multiplied 😀

Size is incremented 😞

A mathematical concept:
big-O notation
l  Big-O notation captures the intuitions of “size increases

without bound” and “constant factors can be ignored”:

 f(n) ∈ O(g(n))

means that f(n) has upper bound g(n) with some constant factor c and
given that n is sufficiently large (bigger than some n0)

f(n) ∈ O(g(n)) iff ∃c > 0, ∃n0 ≥ 1 such that ∀n ≥ n0 : f(n) ≤ c⋅g(n)

g(n)

f(n)
c⋅g(n)

n
n0

Starting from n0,
f(n) is always
below c⋅g(n)

Using big-O notation
l  2n+10 ∈ O(n) since 2n+10 ≤ 4×n for n ≥ 5
l  This is the best upper bound: we can’t do better than g(n)=n

l  2n+10 ∈ O(n2) since 2n+10 ≤ 1×n2 for n ≥ 5
l  This is not a very good upper bound (see previous example)

l  2100 ∈ O(1) since 2100 ≤ 2100×1 for n ≥ 1
l  Constants are constants no matter how large!

l  3n2 + 10n log10 n + 125n + 100 ∈ O(n2)
 since 3n2 + 10n log10 n + 125n + 100 ≤ 4×n2 for n ≥ 148
We keep dominant terms and remove constant factors

l  The function g(n) is called the temporal complexity of the program

