
What is the execution 
time of my program? 
l  I can measure the number of seconds for a given input 

l  My trusty iPhone 13 takes 5 seconds (😀) to compute the 
eigenvalues of a web link matrix of size 109×109 (PageRank) 

l  This is not very useful information (not much can be inferred from 
it except that I have a fast processor in my phone) 

l  More interesting is to see how the execution time 
depends on the input size (for predicting the time) 
l  This is a function not a number 

l  Even more interesting is to see how the execution time 
changes when the input size increases without bound 
l  This is called asymptotic analysis 
l  What happens when the web link matrix gets bigger and bigger? 



Asymptotic analysis and 
computational complexity 
l  What function gives the execution time in function of the input size, 

when the size increases without bound? 
l  Asymptotic analysis is finding an approximation whose error tends to 

zero when a parameter tends to infinity 

l  If we know this function, we can infer many things 
l  What is the time for a given input size? 
l  What is the maximum input size for a given time? 
l  How does the maximum input size change 

if I buy a computer that is 256 times faster? 

l  Computational complexity is the use of asymptotic analysis to study 
the execution time and memory use of programs 
l  The word « complexity » is used in a different way than in everyday life 



Fast-growing functions 
are bad 
l  Assume f(n) is the time in microseconds for input size n 
l  What is the time for a given input size? 

 
l  What is the maximum input size for a given time? 

 
f(n) \ Time 1 second 1 minute 1 hour 

n 1 x 106 6 x 107 3.6 x 109 
400n 2500 150 000 9 x 106 
2n2 707 5477 42426 
n4 31 88 244 
2n 19 25 31 

Size \ f(n) n 400n 2n2 n4 2n 
1 1 µs 400 µs 2 µs 1 µs 2 µs 

1000 1000 µs 0,4 s 2 s 11d 14h 5×10291 y 
1000000 1 s 400 s 23d 4h 3×1010 y 5×10301020 y 

Red = we can’t 
wait that long 

Red = we can’t 
do big problems 



Constant factors can 
be ignored 
l  How does the maximum input size m change 

if I buy a computer that is 256 times faster? 

l  The exponential function 2n is very bad: size is only 
incremented, not multiplied (so it never gets very big!) 

l  The constant factor (n versus 400n) does not matter 

f(n) New maximum size 
n 256m 

400n 256m 
2n2 16m 
n4 4m 
2n m+8 

Size is multiplied 😀 

Size is incremented 😞 



A mathematical concept: 
big-O notation 
l  Big-O notation captures the intuitions of “size increases 

without bound” and “constant factors can be ignored”: 
   

 f(n) ∈ O(g(n)) 
  
means that f(n) has upper bound g(n) with some constant factor c and 
given that n is sufficiently large (bigger than some n0) 

 
f(n) ∈ O(g(n))    iff    ∃c > 0, ∃n0 ≥ 1 such that ∀n ≥ n0 : f(n) ≤ c⋅g(n)  

g(n) 

f(n) 
c⋅g(n) 

n 
n0 

Starting from n0, 
f(n) is always 
below c⋅g(n) 



Using big-O notation 
l  2n+10 ∈ O(n)   since  2n+10 ≤ 4×n  for  n ≥ 5 
l  This is the best upper bound: we can’t do better than g(n)=n 

l  2n+10 ∈ O(n2)   since  2n+10 ≤ 1×n2  for  n ≥ 5 
l  This is not a very good upper bound (see previous example) 

l  2100 ∈ O(1)    since  2100 ≤ 2100×1  for  n ≥ 1 
l  Constants are constants no matter how large! 

l  3n2 + 10n log10 n + 125n + 100 ∈ O(n2) 
  since  3n2 + 10n log10 n + 125n + 100 ≤ 4×n2  for  n ≥ 148 
We keep dominant terms and remove constant factors 

l  The function g(n) is called the temporal complexity of the program 


