Best case, average case, and worst case

What does it mean to say $f(n)$ is a function of input size n if there can be many different inputs with same size n (e.g., if the input is a list)?
| $f(n)$ might be different for different input lists!

- So we need to take some kind of average
- There are three standard ways to do this: best case, average case, and worst case
- Best case: take only inputs of size n with smallest time
- Worst case: take only inputs of size n with largest time
- Average case: take inputs of size n according to some probability distribution (which must be given)

Example of best, average, and worst

- Let's use the function \{FirstNegative L$\}$ that takes a list of integers and returns the position of the first negative:
- For example, \{FirstNegative [5 867]\} returns 2
- Best case: We only give lists whose first element is negative. Then $f_{\text {best }}(n) \in O(1)$
- Worst case: We only give lists with all elements positive except the last. Then $f_{\text {worst }}(n) \in O(n)$
- Average case:
- If each element has independent probability 0.5 to be negative, then $f_{\text {average }}(n) \in O(1)$
- If the position of the first negative element in the list is uniformly distributed from 1 to n , then $f_{\text {average }}(n) \in O(n)$

