
Upper and lower bounds 
l  The big-O notation gives an upper bound 

l  f(n) ∈ O(g(n)) means that f(n) has an upper bound g(n) 

l  But sometimes we need a lower bound, i.e., f(n) is 
at least g(n) (minimum work to do a computation) 

l  We introduce a new concept:  f(n) ∈ Ω(g(n)) 

l  And sometimes we would like to have both a lower 
and upper bound for f(n) 

l  We introduce a new concept: f(n) ∈ Θ(g(n)) 

l  We can use O(g(n)) to define Ω(g(n)) and Θ(g(n)) 



Defining big-Ω and big-Θ 
l  Ω (Big Omega) denotes a lower bound: 

 
 
 
For example: n3 ∈ Ω(n2) since n2 ∈ O(n3) 
Intuition: g(n) defines the floor and f(n) is always above the floor 
 

l  Θ (Big Theta) denotes lower and upper bounds at the same time 
(asymptotic equivalence): 
 
 
  
For example: 400n-3 ∈ Θ(n) 
Intuition: g(n) defines a “corridor” (with both floor and ceiling) and 
f(n) always stays in the corridor 

f(n) ∈ Ω(g(n))  iff  g(n) ∈ O(f(n)) 

f(n) ∈ Θ(g(n))  iff  f(n) ∈ O(g(n))  and  f(n) ∈ Ω(g(n))  



What’s the difference 
between big-O and big-Θ ? 
l  Let’s say we have a program that takes a list 

of integers and returns the position of the first negative 
element 
l  I={FirstNegative L} 

 

l  If L has size n then we can have 
l  Worst case time fworst(n) ∈ Θ(n) ⇒ for the inputs we consider 

(all elements positive except for the last one), time is always 
proportional to n, never less 

l  Average case time faverage(n) ∈ O(n) ⇒ for the inputs 
we consider (all possible lists), time is bounded above by n, 
but it might be less for some inputs (say, if first element is 
negative) 


