
Upper and lower bounds
l  The big-O notation gives an upper bound

l  f(n) ∈ O(g(n)) means that f(n) has an upper bound g(n)

l  But sometimes we need a lower bound, i.e., f(n) is
at least g(n) (minimum work to do a computation)

l  We introduce a new concept: f(n) ∈ Ω(g(n))

l  And sometimes we would like to have both a lower
and upper bound for f(n)

l  We introduce a new concept: f(n) ∈ Θ(g(n))

l  We can use O(g(n)) to define Ω(g(n)) and Θ(g(n))

Defining big-Ω and big-Θ
l  Ω (Big Omega) denotes a lower bound:

For example: n3 ∈ Ω(n2) since n2 ∈ O(n3)
Intuition: g(n) defines the floor and f(n) is always above the floor

l  Θ (Big Theta) denotes lower and upper bounds at the same time
(asymptotic equivalence):

For example: 400n-3 ∈ Θ(n)
Intuition: g(n) defines a “corridor” (with both floor and ceiling) and
f(n) always stays in the corridor

f(n) ∈ Ω(g(n)) iff g(n) ∈ O(f(n))

f(n) ∈ Θ(g(n)) iff f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n))

What’s the difference
between big-O and big-Θ ?
l  Let’s say we have a program that takes a list

of integers and returns the position of the first negative
element
l  I={FirstNegative L}

l  If L has size n then we can have
l  Worst case time fworst(n) ∈ Θ(n) ⇒ for the inputs we consider

(all elements positive except for the last one), time is always
proportional to n, never less

l  Average case time faverage(n) ∈ O(n) ⇒ for the inputs
we consider (all possible lists), time is bounded above by n,
but it might be less for some inputs (say, if first element is
negative)

