
Spatial complexity
l  So far we have measured execution time,

which is called temporal complexity
l  We can also measure memory use,

which is called spatial complexity
l  How much memory is used for input size n?

l  There are two ways to measure space:
l  Active memory mactive(n,t) in memory words: total number of

words in use by the program at time t
l  Memory consumption mconsume(n,t) in words per second: number

of words allocated per second at time t

Active memory versus
memory consumption
l  Active memory is how many words the program needs at any time

l  An in-memory database has a large active memory (= the size of the
database) but a small memory consumption (= little memory is needed
to calculate the result of a query)

l  Memory consumption is how many words the program creates per
time unit
l  A simulation of molecules moving in a box has a large memory

consumption (= each particle position is recalculated at every time step
according to a complex computation that needs much temporary data)
but a small active memory (= little memory is needed to store positions
and velocities of all particles)

Intuition: Your active size is how much you weigh (in kg); your food
consumption is how much you eat (in kg/day)
l  The food you eat is used by your metabolism but only a small part (or none) becomes

part of your body! Even if you eat 2 kg/day you won’t weigh 200 kg after 100 days.

Life cycle of a
memory word

l  Active memory is all words the program needs at a given time; memory
consumption is how many words are allocated from the Free set per second

l  When during execution the program no longer needs a word (when the word
is no longer referenced), then the word automatically becomes Inactive

l  Periodically, the system collects all Inactive words and puts them back in the
Free set (this is usually done by an algorithm called garbage collection)

We can explain the
difference between
active memory and
memory consumption
through the life cycle
of a memory word

Computational complexity
and kernel language
l  We can calculate the temporal complexity using the kernel language

l  Each instruction in the kernel language consists of one or more primitive
operations with a constant time

l  We count the primitive operations as the program executes

l  We can calculate the spatial complexity using the kernel language
l  We calculate memory consumption by counting the words that the kernel

instructions allocate
l  We calculate active memory by starting from the semantic stack and

following all references (see lesson 6)

l  So we can use the semantics of lesson 6 to calculate both the
temporal and spatial complexity
l  We can even do garbage collection using this semantics!

