
The example instruction
in kernel language

local X in
 local B in
 B=true
 if B then X=1 else skip end
 end
end

Start of the execution:
the initial execution state
([(local X in
 local B in
 B=true
 if B then X=1 else skip end
 end
 end, {})],
 {})

l  We start with an empty memory
and an empty environment

The local X in ... end
instruction
([(local B in

 B=true
 if B then X=1 else skip end

 end,
 {X → x})],
 {x})

l  We create a new variable x in memory
l  We put the inner instruction on the stack and

add X→x to its environment

The local B in ... end
instruction

([((B=true
 if B then X=1 else skip end),

 {B → b, X → x})],
 {b,x})

l  We create a new variable b in memory
l  We put the inner instruction on the stack and

add B→b to its environment

The sequential composition
instruction

([(B=true,{B → b, X → x}),
 (if B then X=1

 else skip end,{B → b, X → x})],
 {b,x})

l  We split the sequential composition into its two parts
l  We put the two instructions on the stack
l  The environments stay the same

The B=true instruction

([(if B then X=1
 else skip end,{B → b, X → x})],
 {b=true, x})

l  We bind b to true in memory

The conditional instruction

([(X=1,{B → b, X → x})],
 {b=true, x})

l  We read the value of B
l  Since B is true, it puts the instruction after then on the stack
l  If B is false, it will put the instruction after else on the stack
l  If B has any other value, then the conditional raises an error

l  (Note: If B is unbound then the execution of the semantic
stack stops until B becomes bound – this can only happen in
another semantic stack, i.e., with concurrency)

The X=1 instruction

([],

 {b=true, x=1})

l  We bind x to 1 in memory
l  Execution stops because the stack is empty

Semantic rules
we have seen

l  This example has shown us the execution of
four instructions:
l  local <x> in <s> end (variable creation)
l  <s>1 <s>2 (sequential composition)
l  if <x> then <s>1 else <s>2 end (conditional)
l  <x>=<v> (assignment)

l  In the next unit we will see the semantic rules
corresponding to these instructions

